Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 348
Filtrar
1.
Brain Behav Immun Health ; 36: 100743, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38435720

RESUMO

Alzheimer's disease (AD) involves a complex pathological process that evolves over years, and its etiology is understood as a classic example of gene-environment interaction. The notion that exposure to microbial organisms may play some role in AD pathology has been proposed and debated for decades. New evidence from model organisms and -omic studies, as well as epidemiological data from the recent COVID-19 pandemic and widespread use of vaccines, offers new insights into the "germ hypothesis" of AD. To review new evidence and identify key research questions, the Duke/University of North Carolina (Duke/UNC) Alzheimer's Disease Research Center hosted a virtual symposium and workshop: "New Approaches for Understanding the Potential Role of Microbes in Alzheimer's disease." Discussion centered around the antimicrobial protection hypothesis of amyloid accumulation, and other mechanisms by which microbes could influence AD pathology including immune cell activation, changes in blood-brain barrier, or direct neurotoxicity. This summary of proceedings reviews the content presented in the symposium and provides a summary of major topics and key questions discussed in the workshop.

2.
Tissue Barriers ; : 2292461, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38095516

RESUMO

BACKGROUND: A number of peptide incretin receptor agonists (IRAs) show promise as therapeutics for Alzheimer's disease (AD) and Parkinson's disease (PD). Transport across the blood-brain barrier (BBB) is one way for IRAs to act directly within the brain. To determine which IRAs are high priority candidates for treating these disorders, we have studied their brain uptake pharmacokinetics. METHODS: We quantitatively measure the ability of four IRAs to cross the BBB. We injected adult male CD-1 mice intravenously with 125I- or 14C-labeled albiglutide, dulaglutide, DA5-CH, or tirzepatide and used multiple-time regression analyses to measure brain kinetics up to 1 hour. For those IRAs failing to enter the brain 1 h after intravenous injection, we also investigated their ability to enter over a longer time frame (i.e., 6 h). RESULTS: Albiglutide and dulaglutide had the fastest brain uptake rates within 1 hour. DA5-CH appears to enter the brain rapidly, reaching equilibrium quickly. Tirzepatide does not appear to cross the BBB within 1 h after iv injection but like albumin, did so slowly over 6 h, presumably via the extracellular pathways. CONCLUSIONS: We find that IRAs can cross the BBB by two separate processes; one that is fast and one that is slow. Three of the four IRAs investigated here have fast rates of transport and should be taken into consideration for testing as AD and PD therapeutics as they would have the ability to act quickly and directly on the brain as a whole.

3.
Exp Neurol ; 370: 114563, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37806514

RESUMO

There is a paucity of information regarding efficacious pharmacological neuroprotective strategies to attenuate or reduce brain injury in neonates. Lipopolysaccharide (LPS) disrupts blood-brain barrier (BBB) function in adult rodents and increases inflammation in adults and neonates. Human blood-derived Inter-alpha Inhibitor Proteins (IAIPs) are neuroprotective, improve neonatal survival after LPS, and attenuate LPS-induced disruption of the BBB in adult male mice. We hypothesized that LPS also disrupts the function of the BBB in neonatal mice and that IAIPs attenuate the LPS-induced BBB disruption in male and female neonatal mice. IAIPs were administered to neonatal mice after LPS and BBB permeability quantified with intravenous 14C-sucrose and 99mTc-albumin. Although repeated high doses (3 mg/kg) of LPS in neonates resulted in high mortality rates and a robust increase in BBB permeability, repeated lower doses (1 mg/kg) of LPS resulted in lower mortality rates and disruption of the BBB in both male and female neonates. IAIP treatment attenuated disruption of the BBB similarly to sucrose and albumin after exposure to low-dose LPS in neonatal mice. Exposure to low-dose LPS elevated IAIP concentrations in blood, but it did not appear to increase the systemic levels of Pre-alpha inhibitor (PaI), one of the family members of the IAIPs that contains heavy chain 3. We conclude that IAIPs attenuate LPS-related disruption of the BBB in both male and female neonatal mice.


Assuntos
Barreira Hematoencefálica , Lipopolissacarídeos , Camundongos , Animais , Masculino , Feminino , Humanos , Barreira Hematoencefálica/metabolismo , Lipopolissacarídeos/toxicidade , Animais Recém-Nascidos , Albuminas/metabolismo , Sacarose/metabolismo
4.
Peptides ; 169: 171079, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37598757

RESUMO

The field of peptides exploded in the 1970's and has continued to be a major area of discovery. Among the early discoveries was that peptides administered peripherally could affect brain functions. This led Kastin to propose that peptides could cross the blood-brain barrier (BBB). Although initially very controversial, Kastin, I, and others demonstrated not only that peptides can cross the BBB, but elucidated many fundamental characteristics of that passage. That work was in large part the basis of the 2022 Viktor Mutt Lectureship. Here, we review some of the early work with current updates on topics related to the penetration of peptides across the BBB. We briefly review mechanisms by which peripherally administered peptides can affect brain function without crossing the BBB, and then review the major mechanisms by which peptides and their analogs have been show to cross the BBB: transmembrane diffusion, saturable transport, and adsorptive transcytosis. Saturable transport systems are adaptable to physiologic changes and can be altered by disease states. In particular, the transport across the BBB of insulin and of pituitary adenylate cyclase activating polypeptide (PACAP) illustrate many of the concepts regarding peptide transport across the BBB.


Assuntos
Barreira Hematoencefálica , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Transporte Biológico , Insulina
5.
Pharmaceutics ; 15(8)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37631246

RESUMO

Research on the neuroprotective effect of pituitary adenylate cyclase-activating polypeptide (PACAP) and its use as a therapeutic agent has grown over the past 30 years. Both in vitro and in vivo experiments have shown that PACAP exerts a strong neuroprotective effect in many central and peripheral neuronal diseases. Various delivery routes have been employed from intravenous (IV) injections to intracerebroventricular (ICV) administration, leading either to systemic or topical delivery of the peptide. Over the last decade, a growing interest in the use of intranasal (IN) administration of PACAP and other therapeutic agents has emerged as an alternative delivery route to target the brain. The aim of this review is to summarize the findings on the neuroprotective effect of PACAP and to discuss how the IN administration of PACAP could contribute to target the effects of this pleiotropic peptide.

7.
Brain Behav Immun ; 111: 386-394, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37146655

RESUMO

High-mobility group box 1 (HMGB1) is a ubiquitous protein that regulates transcription in the nucleus, and is an endogenous damage-associated molecular pattern molecule that activates the innate immune system. HMGB1 activates the TLR4 and RAGE recepto, inducing downstream signals reminiscent of cytokines that have been found to cross the blood-brain barrier (BBB). Blood HMGB1 increases in stroke, sepsis, senescence, alcohol binge drinking and other conditions. Here, we examined the ability of HMGB1 radioactively labeled with iodine (I-HMGB1) to cross the BBB. We found that I-HMGB1 readily entered into mouse brain from the circulation with a unidirectional influx rate of 0.654 µl/g-min. All brain regions tested took up I-HMGB1; uptake was greatest by the olfactory bulb and least in the striatum. Transport was not reliably inhibited by unlabeled HMGB1 nor by inhibitors of TLR4, TLR2, RAGE, or CXCR4. Uptake was enhanced by co-injection of wheatgerm agglutinin, suggestive of involvement of absorptive transcytosis as a mechanism of transport. Induction of inflammation/neuroinflammation with lipopolysaccharide is known to increase blood HMGB1; we report here that brain transport is also increased by LPS-induced inflammation. Finally, we found that I-HMGB1 was also transported in the brain-to-blood direction, with both unlabeled HMGB1 or lipopolysaccharide increasing the transport rate. These results show that HMGB1 can bidirectionally cross the BBB and that those transport rates are enhanced by inflammation. Such transport provides a mechanism by which HMGB1 levels would impact neuroimmune signaling in both the brain and periphery.


Assuntos
Barreira Hematoencefálica , Proteína HMGB1 , Animais , Camundongos , Barreira Hematoencefálica/metabolismo , Proteína HMGB1/metabolismo , Inflamação , Lipopolissacarídeos , Receptor 4 Toll-Like/metabolismo
8.
Fluids Barriers CNS ; 20(1): 28, 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37076875

RESUMO

BACKGROUND: Insulin transport across the blood-brain barrier (BBB) is a highly regulated, saturable process, known to be affected by many peripheral substrates including insulin itself and triglycerides. This is in contrast to insulin leakage into peripheral tissues. Whether the central nervous system (CNS) can control the rate of insulin uptake by brain remains to be determined. Insulin BBB interactions are impaired in Alzheimer's disease (AD) and CNS insulin resistance is widely prevalent in AD. Therefore, if CNS insulin controls the rate of insulin transport across the BBB, then the defective transport of insulin seen in AD could be one manifestation of the resistance to CNS insulin observed in AD. METHODS: We investigated whether enhancing CNS insulin levels or induction of CNS insulin resistance using an inhibitor of the insulin receptor altered the blood-to-brain transport of radioactively labeled insulin in young, healthy mice. RESULTS: We found that insulin injected directly into the brain decreased insulin transport across the BBB for whole brain and the olfactory bulb in male mice, whereas insulin receptor blockade decreased transport in female mice for whole brain and hypothalamus. Intranasal insulin, currently being investigated as a treatment in AD patients, decreased transport across the BBB of the hypothalamus. CONCLUSIONS: These results suggest CNS insulin can control the rate of insulin brain uptake, connecting CNS insulin resistance to the rate of insulin transport across the BBB.


Assuntos
Doença de Alzheimer , Resistência à Insulina , Masculino , Feminino , Camundongos , Animais , Insulina/farmacologia , Receptor de Insulina/fisiologia , Encéfalo/fisiologia , Sistema Nervoso Central , Barreira Hematoencefálica/fisiologia
9.
Metabolites ; 13(4)2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37110227

RESUMO

Brain glucose hypometabolism is an early sign of Alzheimer's disease (AD), and interventions which offset this deficit, such as ketogenic diets, show promise as AD therapeutics. Conversely, high-fat feeding may exacerbate AD risk. We analyzed the metabolomic profile of cerebrospinal fluid (CSF) in a pilot study of older adults who underwent saline and triglyceride (TG) infusions. Older adults (12 cognitively normal (CN), age 65.3 ± 8.1, and 9 with cognitive impairment (CI), age 70.9 ± 8.6) underwent a 5 h TG or saline infusion on different days using a random crossover design; CSF was collected at the end of infusion. Aqueous metabolites were measured using a targeted mass spectroscopy (MS) platform focusing on 215 metabolites from over 35 different metabolic pathways. Data were analyzed using MetaboAnalyst 4.0 and SAS. Of the 215 targeted metabolites, 99 were detectable in CSF. Only one metabolite significantly differed by treatment: the ketone body 3-hydroxybutyrate (HBA). Post hoc analyses showed that HBA levels were associated with age and markers of metabolic syndrome and demonstrated different correlation patterns for the two treatments. When analyzed by cognitive diagnosis group, TG-induced increases in HBA were over 3 times higher for those with cognitive impairment (change score CN +9.8 uM ± 8.3, CI +32.4 ± 7.4, p = 0.0191). Interestingly, individuals with cognitive impairment had higher HBA levels after TG infusion than those with normal cognition. These results suggest that interventions that increase plasma ketones may lead to higher brain ketones in groups at risk for AD and should be confirmed in larger intervention studies.

10.
Exp Biol Med (Maywood) ; 248(5): 399-411, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37012666

RESUMO

The blood-brain barrier (BBB) is a critical physiochemical interface that regulates communication between the brain and blood. It is comprised of brain endothelial cells which regulate the BBB's barrier and interface properties and is surrounded by supportive brain cell types including pericytes and astrocytes. Recent reports have suggested that the BBB undergoes dysfunction during normative aging and in disease. In this review, we consider the effect of cellular senescence, one of the nine hallmarks of aging, on the BBB. We first characterize known normative age-related changes at the BBB, and then evaluate changes in neurodegenerative diseases, with an emphasis on if/how cellular senescence is influencing these changes. We then discuss what insight has been gained from in vitro and in vivo studies of cellular senescence at the BBB. Finally, we evaluate mechanisms by which cellular senescence in peripheral pathologies can indirectly or directly affect BBB function.


Assuntos
Barreira Hematoencefálica , Células Endoteliais , Senescência Celular , Encéfalo
12.
Brain Behav Immun ; 110: 222-236, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36907289

RESUMO

BACKGROUND: Repetitive blast-related mild traumatic brain injury (mTBI) caused by exposure to high explosives is increasingly common among warfighters as well as civilians. While women have been serving in military positions with increased risk of blast exposure since 2016, there are few published reports examining sex as a biological variable in models of blast mTBI, greatly limiting diagnosis and treatment capabilities. As such, here we examined outcomes of repetitive blast trauma in female and male mice in relation to potential behavioral, inflammatory, microbiome, and vascular dysfunction at multiple timepoints. METHODS: In this study we utilized a well-established blast overpressure model to induce repetitive (3x) blast-mTBI in both female and male mice. Acutely following repetitive exposure, we measured serum and brain cytokine levels, blood-brain barrier (BBB) disruption, fecal microbial abundance, and locomotion and anxiety-like behavior in the open field assay. At the one-month timepoint, in female and male mice we assessed behavioral correlates of mTBI and PTSD-related symptoms commonly reported by Veterans with a history of blast-mTBI using the elevated zero maze, acoustic startle, and conditioned odorant aversion paradigms. RESULTS: Repetitive blast exposure resulted in both similar (e.g., increased IL-6), and disparate (e.g., IL-10 increase only in females) patterns of acute serum and brain cytokine as well as gut microbiome changes in female and male mice. Acute BBB disruption following repetitive blast exposure was apparent in both sexes. While female and male blast mice both exhibited acute locomotor and anxiety-like deficits in the open field assay, only male mice exhibited adverse behavioral outcomes that lasted at least one-month. DISCUSSION: Representing a novel survey of potential sex differences following repetitive blast trauma, our results demonstrate unique similar yet divergent patterns of blast-induced dysfunction in female vs. male mice and highlight novel targets for future diagnosis and therapeutic development.


Assuntos
Traumatismos por Explosões , Concussão Encefálica , Transtornos de Estresse Pós-Traumáticos , Veteranos , Feminino , Masculino , Camundongos , Animais , Humanos , Concussão Encefálica/complicações , Caracteres Sexuais , Transtornos de Estresse Pós-Traumáticos/etiologia , Ansiedade , Traumatismos por Explosões/complicações
13.
Int J Mol Sci ; 24(3)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36768699

RESUMO

In this review manuscript, we discuss the effects of select common viruses on insulin sensitivity and blood-brain barrier (BBB) function and the potential overlapping and distinct mechanisms involved in these effects. More specifically, we discuss the effects of human immunodeficiency virus (HIV), herpes, hepatitis, influenza, respiratory syncytial virus (RSV), and SARS-CoV-2 viruses on insulin sensitivity and BBB function and the proposed underlying mechanisms. These viruses differ in their ability to be transported across the BBB, disrupt the BBB, and/or alter the function of the BBB. For RSV and SARS-CoV-2, diabetes increases the risk of infection with the virus, in addition to viral infection increasing the risk for development of diabetes. For HIV and hepatitis C and E, enhanced TNF-a levels play a role in the detrimental effects. The winter of 2022-2023 has been labeled as a tridemic as influenza, RSV, and COVID-19 are all of concern during this flu season. There is an ongoing discussion about whether combined viral exposures of influenza, RSV, and COVID-19 have additive, synergistic, or interference effects. Therefore, increased efforts are warranted to determine how combined viral exposures affect insulin sensitivity and BBB function.


Assuntos
COVID-19 , Infecções por HIV , Influenza Humana , Resistência à Insulina , Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Humanos , Barreira Hematoencefálica , SARS-CoV-2
14.
Brain Behav Immun ; 109: 251-268, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36682515

RESUMO

COVID-19 and especially Long COVID are associated with severe CNS symptoms and may place persons at risk to develop long-term cognitive impairments. Here, we show that two non-infective models of SARS-CoV-2 can cross the blood-brain barrier (BBB) and induce neuroinflammation, a major mechanism underpinning CNS and cognitive impairments, even in the absence of productive infection. The viral models cross the BBB by the mechanism of adsorptive transcytosis with the sugar N-acetylglucosamine being key. The delta and omicron variants cross the BB B faster than the other variants of concern, with peripheral tissue uptake rates also differing for the variants. Neuroinflammation induced by icv injection of S1 protein was greatly enhanced in young and especially in aged SAMP8 mice, a model of Alzheimer's disease, whereas sex and obesity had little effect.


Assuntos
Doença de Alzheimer , COVID-19 , Humanos , Camundongos , Animais , Barreira Hematoencefálica/metabolismo , Doença de Alzheimer/metabolismo , SARS-CoV-2 , COVID-19/complicações , Doenças Neuroinflamatórias , Síndrome de COVID-19 Pós-Aguda
15.
Int J Mol Sci ; 24(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36675130

RESUMO

Ozone (O3) is an air pollutant that primarily damages the lungs, but growing evidence supports the idea that O3 also harms the brain; acute exposure to O3 has been linked to central nervous system (CNS) symptoms such as depressed mood and sickness behaviors. However, the mechanisms by which O3 inhalation causes neurobehavioral changes are limited. One hypothesis is that factors in the circulation bridge communication between the lungs and brain following O3 exposure. In this study, our goals were to characterize neurobehavioral endpoints of O3 exposure as they relate to markers of systemic and pulmonary inflammation, with a particular focus on serum amyloid A (SAA) and kynurenine as candidate mediators of O3 behavioral effects. We evaluated O3-induced dose-, time- and sex-dependent changes in pulmonary inflammation, circulating SAA and kynurenine and its metabolic enzymes, and sickness and depressive-like behaviors in Balb/c and CD-1 mice. We found that 3 parts per million (ppm) O3, but not 2 or 1 ppm O3, increased circulating SAA and lung inflammation, which were resolved by 48 h and was worse in females. We also found that indoleamine 2,3-dioxygenase (Ido1) mRNA expression was increased in the brain and spleen 24 h after 3 ppm O3 and that kynurenine was increased in blood. Sickness and depressive-like behaviors were observed at all O3 doses (1-3 ppm), suggesting that behavioral responses to O3 can occur independently of increased SAA or neutrophils in the lungs. Using SAA knockout mice, we found that SAA did not contribute to O3-induced pulmonary damage or inflammation, systemic increases in kynurenine post-O3, or depressive-like behavior but did contribute to weight loss. Together, these findings indicate that acute O3 exposure induces transient symptoms of sickness and depressive-like behaviors that may occur in the presence or absence of overt pulmonary neutrophilia and systemic increases of SAA. SAA does not appear to contribute to pulmonary inflammation induced by O3, although it may contribute to other aspects of sickness behavior, as reflected by a modest effect on weight loss.


Assuntos
Ozônio , Pneumonia , Feminino , Camundongos , Animais , Ozônio/toxicidade , Proteína Amiloide A Sérica/metabolismo , Cinurenina/metabolismo , Pulmão/metabolismo , Pneumonia/metabolismo , Fenótipo
16.
Int J Mol Sci ; 24(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36675154

RESUMO

The blood-brain barrier (BBB) is an interface primarily comprised of brain endothelial cells (BECs), separating the central nervous system (CNS) from the systemic circulation while carefully regulating the transport of molecules and inflammatory cells, and maintaining the required steady-state environment. Inflammation modulates many BBB functions, but the ultrastructural cytoarchitectural changes of the BBB with inflammation are understudied. Inflammation was induced in male 8-10-week-old CD-1 mice with intraperitoneal lipopolysaccharide (LPS), using a regimen (3 mg/kg at 0, 6, and 24 h) that caused robust BBB disruption but had minimal lethality at the study timepoint of 28 h. Perfusion-fixed brains were collected and the frontal cortical layer III regions were analyzed using a transmission electron microscopy (TEM). The LPS-treated mice had pronounced ultrastructural remodeling changes in BECs that included plasma membrane ruffling, increased numbers of extracellular microvesicles, small exosome formation, aberrant BEC mitochondria, increased BEC transcytosis, while tight junctions appeared to be unaltered. Aberrant pericytes were contracted with rounded nuclei and a loss of their elongated cytoplasmic processes. Surveilling microglial cells were attracted to the neurovascular unit (NVU) of BECs, and astrocyte detachment and separation were associated with the formation of a perivascular space and pericapillary edema. The LPS treatment resulted in numerous ultrastructural aberrant remodeling changes to the neurovascular unit's BECs, microglia, pericytes, and astrocytes. In summary, a disturbance of the NVU morphology is a consequence of LPS treatment.


Assuntos
Barreira Hematoencefálica , Lipopolissacarídeos , Masculino , Camundongos , Animais , Barreira Hematoencefálica/metabolismo , Lipopolissacarídeos/efeitos adversos , Doenças Neuroinflamatórias , Células Endoteliais/metabolismo , Astrócitos/metabolismo , Inflamação/induzido quimicamente , Inflamação/metabolismo
17.
J Pharmacol Exp Ther ; 384(1): 205-223, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36310035

RESUMO

One important function of the vascular blood-brain barrier (BBB) is to facilitate neuroimmune communication. The BBB fulfills this function, in part, through its ability to transport cytokines and chemokines. C-C motif chemokine receptor 2 (CCL2) (MCP-1) and C-C motif chemokine receptor 5 (CCL5) (RANTES) are proinflammatory chemokines that mediate neuroimmune responses to acute insults and aspects of brain injury and neurodegenerative diseases; however, a blood-to-brain transport system has not been evaluated for either chemokine in vivo. Therefore, we determined whether CCL2 and CCL5 in blood can cross the intact BBB and enter the brain. Using CD-1 mice, we found that 125I-labeled CCL2 and CCL5 crossed the BBB and entered the brain parenchyma. We next aimed to identify the mechanisms of 125I-CCL2 and 125I-CCL5 transport in an in situ brain perfusion model. We found that both heparin and eprodisate inhibited brain uptake of 125I-CCL2 and 125I-CCL5 in situ, whereas antagonists of their receptors, CCR2 or CCR5, respectively, did not, suggesting that heparan sulfates at the endothelial surface mediate BBB transport. Finally, we showed that CCL2 and CCL5 transport across the BBB increased following a single injection of 0.3 mg/kg lipopolysaccharide. These data demonstrate that CCL2 and CCL5 in the brain can derive, in part, from the circulation, especially during systemic inflammation. Further, binding to the BBB-associated heparan sulfate is a mechanism by which both chemokines can cross the intact BBB, highlighting a novel therapeutic target for treating neuroinflammation. SIGNIFICANCE STATEMENT: Our work demonstrates that C-C motif chemokine ligand 2 (CCL2) and C-C motif chemokine ligand 5 (CCL5) can cross the intact blood-brain barrier and that transport is robustly increased during inflammation. These data suggest that circulating CCL2 and CCL5 can contribute to brain levels of each chemokine. We further show that the transport of both chemokines is inhibited by heparin and eprodisate, suggesting that CCL2/CCL5-heparan sulfate interactions could be therapeutically targeted to limit accumulation of these chemokines in the brain.


Assuntos
Barreira Hematoencefálica , Heparina , Camundongos , Animais , Barreira Hematoencefálica/metabolismo , Heparina/farmacologia , Ligantes , Quimiocinas/metabolismo , Inflamação/tratamento farmacológico , Receptores de Quimiocinas , Heparitina Sulfato
18.
Curr Opin Neurobiol ; 77: 102648, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36347075

RESUMO

Brain endothelial cells (BEC) of the vascular blood-brain barrier (BBB) interact with many different cell types in the brain, including microglia, the brain's resident immune cells. Physical associations of microglia with the BBB and the importance of these interactions in health and disease are an emerging area of study and likely involved in neuroimmune communication. In this mini-review, we consider how microglia and the BBB are intrinsically linked in the developing brain, discuss possible mechanisms that attract microglia to the vasculature in healthy physiological conditions, and examine the known microglial-vascular associated changes in systemic infection and various disease states. Our findings shed light on the complexities of microglial-vascular interactions and highlight the contributions of microglia to the functions of the neurovascular unit.


Assuntos
Barreira Hematoencefálica , Microglia , Microglia/fisiologia , Células Endoteliais , Encéfalo , Neuroimunomodulação
19.
Int J Mol Sci ; 23(20)2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36293369

RESUMO

Exosomes mediate intercellular communication, shuttling messages between cells and tissues. We explored whether exosome tissue sequestration is determined by the exosomes or the tissues using ten radiolabeled exosomes from human or murine, cancerous or noncancerous cell lines. We measured sequestration of these exosomes by the liver, kidney, spleen, and lung after intravenous injection into male CD-1 mice. Except for kidney sequestration of three exosomes, all exosomes were incorporated by all tissues, but sequestration levels varied greatly among exosomes and tissues. Species of origin (mouse vs. human) or source (cancerous vs. noncancerous cells) did not influence tissue sequestration. Sequestration of J774A.1 exosomes by liver involved the mannose-6 phosphate (M6P) receptor. Wheatgerm agglutinin (WGA) or lipopolysaccharide (LPS) treatments enhanced sequestration of exosomes by brain and lung but inhibited sequestration by liver and spleen. Response to LPS was not predictive of response to WGA. Path and heat map analyses included our published results for brain and found distinct clusters among the exosomes and the tissues. In conclusion, we found no evidence for a universal binding site controlling exosome-tissue interactions. Instead, sequestration of exosomes by tissues is differentially regulated by both exosomes and tissues and may be stimulated or inhibited by WGA and inflammation.


Assuntos
Exossomos , Camundongos , Animais , Masculino , Humanos , Exossomos/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Manose/metabolismo , Encéfalo , Aglutininas , Fosfatos/metabolismo
20.
Biomedicines ; 10(7)2022 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-35884888

RESUMO

The concept of insulin resistance has been around since a few decades after the discovery of insulin itself. To allude to the classic Charles Dicken's novel published 62 years before the discovery of insulin, in some ways, this is the best of times, as the concept of insulin resistance has expanded to include the brain, with the realization that insulin has a life beyond the regulation of glucose. In other ways, it is the worst of times as insulin resistance is implicated in devastating diseases, including diabetes mellitus, obesity, and Alzheimer's disease (AD) that affect the brain. Peripheral insulin resistance affects nearly a quarter of the United States population in adults over age 20. More recently, it has been implicated in AD, with the degree of brain insulin resistance correlating with cognitive decline. This has led to the investigation of brain or central nervous system (CNS) insulin resistance and the question of the relation between CNS and peripheral insulin resistance. While both may involve dysregulated insulin signaling, the two conditions are not identical and not always interlinked. In this review, we compare and contrast the similarities and differences between peripheral and CNS insulin resistance. We also discuss how an apolipoprotein involved in insulin signaling and related to AD, apolipoprotein E (apoE), has distinct pools in the periphery and CNS and can indirectly affect each system. As these systems are both separated but also linked via the blood-brain barrier (BBB), we discuss the role of the BBB in mediating some of the connections between insulin resistance in the brain and in the peripheral tissues.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA