Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2313057, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38768957

RESUMO

Mott-Schottky construction and plasmon excitation represent two highly-efficient and closely-linked coping strategies to the high energy loss of oxygen evolution reaction (OER), but the combined effect has rarely been investigated. Herein, with Ag nanoparticles as electronic structure regulator and plasmon exciter, Ag/CoV-LDH@G nanohybrids (NHs) with Mott-Schottky heterojunction and notable plasmon effect are well-designed. Combining theoretical calculations with experiments, it was found that the Mott-Schottky construction modulates the Fermi level/energy band structure of CoV-LDH, which in turn leads to lowered d-band center (from -0.89 to -0.93), OER energy barrier (from 6.78 to 1.31 eV), and preeminent plasmon thermal/electronic effects. The thermal effect can offset the endothermic enthalpy change of OER, promote the deprotonation of *OOH, and accelerate electron transfer kinetics. Whereas the electronic effect can increase the density of charge carriers (from 0.70×1020 to 1.64×1020 cm-3), lower the activation energy of OER (from 30.3 to 17.7 kJ mol-1). Benefiting from these favorable factors, the Ag/CoV-LDH@G NHs show remarkable electrocatalytic performances, with an overpotential of 178 and 263 mV to afford 10 and 100 mA cm-2 for OER, respectively, and a low cell voltage of 1.42 V to drive 10 mA cm-2 for overall water splitting under near-infrared light irradiation. This article is protected by copyright. All rights reserved.

2.
Small ; : e2311763, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38348916

RESUMO

Advanced bifunctional electrocatalysts are essential for propelling overall water splitting (OWS) progress. Herein, relying on the obvious difference in the work function of Ir (5.44 eV) and CoMoO4 (4.03 eV) and the constructed built-in electric field (BEF), an Ir/CoMoO4 /NF heterogeneous catalyst, with ultrafine Ir nanoclusters (1.8 ± 0.2 nm) embedded in CoMoO4 nanosheet arrays on the surface of nickel foam skeleton, is reported. Impressively, the Ir/CoMoO4 /NF shows remarkable electrocatalytic bifunctionality toward hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), especially at large current densities, requiring only 13 and 166 mV to deliver 10 and 1000 mA cm-2 for HER and 196 and 318 mV for OER. Furthermore, the Ir/CoMoO4 /NF||Ir/CoMoO4 /NF electrolyzer demands only 1.43 and 1.81 V to drive 10 and 1000 mA cm-2 for OWS. Systematical theoretical calculations and tests show that the formed BEF not only optimizes interfacial charge distribution and the Fermi level of both Ir and CoMoO4 , but also reduces the Gibbs free energy (ΔGH* , from 0.25 to 0.03 eV) and activation energy (from 13.6 to 8.9 kJ mol-1 ) of HER, the energy barrier (from 3.47 to 1.56 eV) and activation energy (from 21.1 to 13.9 kJ mol-1 ) of OER, thereby contributing to the glorious electrocatalytic bifunctionality.

3.
Small Methods ; : e2301279, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38189527

RESUMO

Transition metal phosphides (TMPs) and phosphates (TM-Pis) nanostructures are promising functional materials for energy storage and conversion. Nonetheless, controllable synthesis of crystalline/amorphous heterogeneous TMPs/TM-Pis nanohybrids or related nanoarchitectures remains challenging, and their electrocatalytic applications toward overall water splitting (OWS) are not fully explored. Herein, the Ni2 P nanocrystals anchored on amorphous V-Pi nanosheet based porous flower-like nanohybrid architectures that are self-supported on carbon cloth (CC) substrate (Ni2 P/V-Pi/CC) are fabricated by conformal oxidation and phosphorization of pre-synthesized NiV-LDH/CC. Due to the unique microstructures and strong synergistic effects of crystalline Ni2 P and amorphous V-Pi components, the obtained Ni2 P/V-Pi/CC owns abundant active sites, suitable surface/interface electronic structure and optimized adsorption-desorption of reaction intermediates, resulting in outstanding electrocatalytic performances toward hydrogen and oxygen evolution reactions in alkaline media. Correspondingly, the assembled Ni2 P/V-Pi/CC||Ni2 P/V-Pi/CC electrolyzer only needs an ultralow cell voltage (1.44 V) to deliver 10 mA cm-2 water-splitting currents, exceeding its counterparts, recently reported bifunctional catalysts-based devices, and Pt/C/CC||IrO2 /CC pairs. Moreover, the Ni2 P/V-Pi/CC||Ni2 P/V-Pi/CC manifests remarkable stability. Also, such device shows a certain prospect for OWS in acidic media. This work may spur the development of TMPs/TMPis-based nanohybrid architectures by combining structure and phase engineering, and push their applications in OWS or other clean energy options.

4.
RSC Adv ; 14(2): 771-778, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38174283

RESUMO

Pd-based bimetallic or multimetallic nanocrystals are considered to be potential electrocatalysts for cathodic oxygen reduction reaction (ORR) in fuel cells. Although much advance has been made, the synthesis of component-controlled Pd-Sn alloy nanocrystals or corresponding nanohybrids is still challenging, and the electrocatalytic ORR properties are not fully explored. Herein, component-controlled synthesis of PdxSny nanocrystals (including Pd3Sn, Pd2Sn, Pd3Sn2, and PdSn) has been realized, which are in situ grown or deposited on pre-treated multi-walled carbon nanotubes (CNTs) to form well-coupled nanohybrids (NHs) by a facile one-pot non-hydrolytic system thermolysis method. In alkaline media, all the resultant PdxSny/CNTs NHs are effective at catalyzing ORR. Among them, the Pd3Sn/CNTs NHs exhibit the best catalytic activity with the half-wave potential of 0.85 V (vs. RHE), good cyclic stability, and excellent methanol-tolerant capability due to the suited Pd-Sn alloy component and its strong interaction or efficient electronic coupling with CNTs. This work is conducive to the advancement of Pd-based nanoalloy catalysts by combining component engineering and a hybridization strategy and promoting their application in clean energy devices.

5.
Small ; 20(10): e2303927, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37875651

RESUMO

The crystalline/amorphous heterophase nanostructures are promising functional materials for biomedicals, catalysis, energy conversion, and storage. Despite great progress is achieved, facile synthesis of crystalline metal/amorphous multinary metal oxides nanohybrids remains challenging, and their electrocatalytic oxygen evolution reaction (OER) performance along with the catalytic mechanism are not systematically investigated. Herein, two kinds of ultrafine crystalline metal domains coupled with amorphous Ni-Fe-Mo oxides heterophase nanohybrids, including Ni/Ni0.5-a Fe0.5 Mo1.5 Ox and Ni-FeNi3 /Ni0.5-b Fe0.5-y Mo1.5 Ox , are fabricated through controllable reduction of amorphous Ni0.5 Fe0.5 Mo1.5 Ox precursors by simply tuning the amount of used reductant. Due to the suited component in metal domains, the special structure with dense crystalline/amorphous interfaces, and strong electronic coupling of their components, the resultant Ni-FeNi3 /Ni0.5-b Fe0.5-y Mo1.5 Ox nanohybrids show greatly enhanced OER activity with a low overpotential (278 mV) to reach 10 mA cm-2 current density and ultrahigh turnover frequency (38160 h-1 ), outperforming Ni/Ni0.5-a Fe0.5 Mo1.5 Ox , Ni0.5 Fe0.5 Mo1.5 Ox precursors, commercial IrO2 , and most of recently reported OER catalysts. Also, such Ni-FeNi3 /Ni0.5-b Fe0.5-y Mo1.5 Ox nanohybrids manifest good catalytic stability. As revealed by a series of spectroscopy and electrochemical analyses, their OER mechanism follows the lattice-oxygen-mediated (LOM) pathway. This work may shed light on the design of advanced heterophase nanohybrids, and promote their applications in water splitting, metal-air batteries, or other clean energy fields.

6.
Nat Chem ; 15(11): 1581-1590, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37550390

RESUMO

Although their zero- to two-dimensional counterparts are well known, three-dimensional chiral hybrid organic-inorganic perovskite single crystals have remained difficult because they contain no chiral components and their crystal phases belong to centrosymmetric achiral point groups. Here we report a general approach to grow single-crystalline 3D lead halide perovskites with chiroptical activity. Taking MAPbBr3 (MA, methylammonium) perovskite as a representative example, whereas achiral MAPbBr3 crystallized from precursors in solution by inverse temperature crystallization method, the addition of micro- or nanoparticles as nucleating agents promoted the formation of chiral crystals under a near equilibrium state. Experimental characterization supported by calculations showed that the chirality of the 3D APbX3 (where A is an ammonium ion and X is Cl, Br or mixed Cl-Br or Br-I) perovskites arises from chiral patterns of the A-site cations and their interaction with the [PbX6]4- octahedra in the perovskite structure. The chiral structure obeys the lowest-energy principle and thereby thermodynamically stable. The chiral 3D hybrid organic-inorganic perovskites served in a circularly polarized light photodetector prototype successfully.

7.
Angew Chem Int Ed Engl ; 62(41): e202310163, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37639284

RESUMO

The rational design of advanced nanohybrids (NHs) with optimized interface electronic environment and rapid reaction kinetics is pivotal to electrocatalytic schedule. Herein, we developed a multiple heterogeneous Co9 S8 /Co3 S4 /Cu2 S nanoparticle in which Co3 S4 germinates between Co9 S8 and Cu2 S. Using high-angle annular-dark-field imaging and theoretical calculation, it was found that the integration of Co9 S8 and Cu2 S tends to trigger the interface phase transition of Co9 S8 , leading to Co3 S4 interlayer due to the low formation energy of Co3 S4 /Cu2 S (-7.61 eV) than Co9 S8 /Cu2 S (-5.86 eV). Such phase transition not only lowers the energy barrier of oxygen evolution reaction (OER, from 0.335 eV to 0.297 eV), but also increases charge carrier density (from 7.76×1014 to 2.09×1015  cm-3 ), and creates more active sites. Compared to Co9 S8 and Cu2 S, the Co9 S8 /Co3 S4 /Cu2 S NHs also demonstrate notable photothermal effect that can heat the catalyst locally, offset the endothermic enthalpy change of OER, and promote carrier migrate, reaction intermediates adsorption/deprotonation to improve reaction kinetics. Profiting from these favorable factors, the Co9 S8 /Co3 S4 /Cu2 S catalyst only requires an OER overpotential of 181 mV and overall water splitting cell voltage of 1.43 V to driven 10 mA cm-2 under the irradiation of near-infrared light, outperforming those without light irradiation and many reported Co-based catalysts.

8.
Chem Asian J ; 18(15): e202300297, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37303300

RESUMO

The first application of an imidazole MOF, the 2D Co(II)- imidazole framework, {[Co(TIB)2 (H2 O)4 ]SO4 } (TIB stands for 1,3,5-tris(1-imidazolyl) benzene) (CoTIB) in photocatalytic CO2 reduction was carried out, and compared with that of ZIF-67. The CO2 /CoTIB (1.0 mg)/Ru(bpy)3 Cl2 (bpy=2,2'-bipyridine) (11.3 mg)/CH3 CN (40 mL)/TEOA (10 mL)/H2 O (400 µL) system produced 76.9 µmol of CO in 9 h, corresponding to the efficiency of 9.4 mmol g-1 h-1 (TOF: 7.3 h-1 ) with a >99% selectivity. Its catalytic activity is even higher than that of ZIF-67 based on TOF values. However, CoTIB is non-porous and has a very poor CO2 adsorption capacity and poor conductivity. Extensive photocatalytic experiments and energy-level diagrams suggest that the reduction did not depend on the CO2 adsorption by the cocatalyst, but can occur by the direct electron transfer from conduction-band maximum (CBM) of the cocatalyst to the zwitterionic alkylcarbonate adduct formed by the reaction of TEOA and CO2 . In addition, the process utilizes the short-lived singlet state (1 MLCT), not the long-lived triplet state (3 MLCT) of Ru(bpy)3 Cl2 to transfer electrons to the CBM of CoTIB. We found that the high efficiency of a cocatalyst, a photosensitizer, or a photocatalytic system depends on the matching of all related energy levels of the photosensitizer, the cocatalyst, CO2 , and the sacrificial agent in the reaction system.

9.
Small ; 19(34): e2301954, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37086143

RESUMO

Magnesium-ion batteries (MIBs) are emerging as potential next-generation energy storage systems due to high security and high theoretical energy density. Nevertheless, the development of MIBs is limited by the lack of cathode materials with high specific capacity and cyclic stability. Currently, transition metal sulfides are considered as a promising class of cathode materials for advanced MIBs. Herein, a template-based strategy is proposed to successfully fabricate metal-organic framework-derived in-situ porous carbon nanorod-encapsulated CuS quantum dots (CuS-QD@C nanorods) via a two-step method of sulfurization and cation exchange. CuS quantum dots have abundant electrochemically active sites, which facilitate the contact between the electrode and the electrolyte. In addition, the tight combination of CuS quantum dots and porous carbon nanorods increases the electronic conductivity while accelerating the transport speed of ions and electrons. With these architectural and compositional advantages, when used as a cathode material for MIBs, the CuS-QD@C nanorods exhibit remarkable performance in magnesium storage, including a high reversible capacity of 323.7 mAh g-1 at 100 mA g-1 after 100 cycles, excellent long-term cycling stability (98.5 mAh g-1 after 1000 cycles at 1.0 A g-1 ), and satisfying rate performance (111.8 mA g-1 at 1.0 A g-1 ).

10.
Small ; 19(26): e2208077, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36960487

RESUMO

Surface modification of electrocatalysts to obtain new or improved electrocatalytic performance is currently the main strategy for designing advanced nanocatalysts. In this work, highly dispersed amorphous molybdenum trisulfide-anchored Platinum nanodendrites (denoted as Pt-a-MoS3  NDs) are developed as efficient hydrogen evolution electrocatalysts. The formation mechanism of spontaneous in situ polymerization MoS4 2- into a-MoS3 on Pt surface is discussed in detail. It is verified that the highly dispersed a-MoS3 enhances the electrocatalytic activity of Pt catalysts under both acidic and alkaline conditions. The potentials at the current density of 10 mA cm-2 (η10 ) in 0.5 m sulfuric acid (H2 SO4 ) and 1 m potassium hydroxide (KOH) electrolyte are -11.5 and -16.3 mV, respectively, which is significantly lower than that of commercial Pt/C (-20.2 mV and -30.7 mV). This study demonstrates that such high activity benefits from the interface between highly dispersed a-MoS3 and Pt sites, which act as the preferred adsorption sites for the efficient conversion of hydrion (H+ ) to hydrogen (H2 ). Additionally, the anchoring of highly dispersed clusters to Pt substrate greatly enhances the corresponding electrocatalytic stability.

11.
Chem Commun (Camb) ; 59(16): 2267-2270, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36734356

RESUMO

This work reports an atomic-scale carbon layer configuration tuning strategy induced by a boron dopant. Through regulating the doping level of boron, it was found that the boron dopant not only favors carbon layer growth by strengthening the metallic state of the Ni core, but also enhances the abundance of pyrrolic N species and graphitization degree of carbon by tailoring the carbon/nitrogen atom configuration, thereby contributing to more active pyrrolic N/carbon sites and accelerated interface reaction dynamics. Consequently, the developed Ni@B,N-C catalyst achieves remarkable electrochemical H2O2 production performances with a high selectivity of 95.5% and a yield of 795 mmol g-1 h-1. In comparison with previous reports in which the boron dopant mainly acts as an electronic structure regulator, this study reveals the tuning effect of boron dopants on the atomic-scale carbon layer configuration, opening up a new avenue for the development of advanced catalysts.

12.
Nano Lett ; 23(3): 1085-1092, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36649599

RESUMO

Curved ultrathin PtPd nanodendrites (CNDs) with long-range compressive strain and highly branched feature are first prepared by a functional surfactant-induced strategy. Precise synthesis realized the construction of both curved and flat PtPd nanodendrites (NDs) with the same atomic ratio, which contributed to exploration of the strain effect on electrocatalytic performance alone. Abundant evidence is provided to confirm that the long-range compressive strain in curved PtPd architectures can effectively tailor the local coordination environment of active sites, lower the position of the d-band center, weaken the adsorption energy of the intermediates (e.g., H* and CO*), and ultimately increase their intrinsic activity. The density functional theory (DFT) calculations further reveal that the introduction of compressive strain weakens the Gibbs free-energy of the intermediate (ΔGH*), which is favorable for accelerating the hydrogen evolution reaction (HER) kinetics. A similar enhanced electrocatalytic performance can also be found in the methanol oxidation reaction (MOR).

13.
J Colloid Interface Sci ; 635: 417-426, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36599240

RESUMO

NaTi2(PO4)3 (NTP) is a promising anode material for sodium-ion batteries (SIBs). It has drawn wide attention because of its stable three-dimensional NASICON-type structure, proper redox potential, and large accommodation space for Na+. However, the inherent low electronic conductivity of the phosphate framework reduces its charge transfer kinetics, thus limiting its exploitation. Therefore, this paper proposes a material with carbon-coated porous NTP olive-like nanospheres (p-NTP@C) to tackle the issues above. Based on experimental data and theoretical calculations, the porous structure of the material is found to be able to provide more active sites and shorten the Na+ diffusion distance. In addition, the carbon coating can effectively improve the electron and Na+ diffusion kinetics. As the anode material for SIBs, the p-NTP@C olive-like nanospheres exhibit a high reversible capacity (127.3 mAh g-1 at 0.1 C) and ultrastable cycling performance (84.8% capacity retention after 10,000 cycles at 5 C). Furthermore, the sodium-ion full cells, composed of p-NTP@C anode and Na3V2(PO4)2F3@carbon cathode, also deliver excellent performance (75.7% capacity retention after 1000 cycles at 1 C). In brief, this nanostructure design provides a viable approach for the future development of long-life and highly stable NASICON-type anode materials.

14.
Sci Bull (Beijing) ; 67(21): 2208-2215, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36545996

RESUMO

Orthorhombic iron-based fluorosulfate KFeSO4F represents one of the most promising cathode materials due to its high theoretical capacity, high voltage plateau, unique three-dimensional conduction pathway for potassium ions, and low cost. Yet, the poor thermostability and intrinsic low electronic conductivity of KFeSO4F challenge its synthesis and electrochemical performance in potassium-ion batteries (PIBs). Herein, we report, for the first time, judicious crafting of carbon nanotubes (CNTs)-interwoven KFeSO4F microspheres in diethylene glycol (DEG) (denoted KFSF@CNTs/DEG) as the cathode to render high-performance PIBs, manifesting an outstanding reversible capacity of 110.9 mAh g-1 at 0.2 C, a high working voltage of 3.73 V, and a long-term capacity retention of 93.9% after 2000 cycles at 3 C. Specifically, KFSF@CNTs/DEG microspheres are created via introducing CNTs into the precursors DEG solution at relatively low temperature. Notably, the strong binding of the ether groups in DEG retards the nucleation and growth of KFSF, leading to in situ formation of microspheres with CNTs interwoven within KFSF crystals, thereby greatly enhancing electronic conductivity of KFSF. Intriguingly, the remarkable electrochemical performance of KFSF@CNTs/DEG cathode is found to stem from the massively exposed (100) plane and uniform interpenetration of CNTs inside KFSF microsphere. More importantly, in situ X-ray diffraction and electrochemical kinetics study unveil outstanding structural stability and high K+ diffusion rate of KFSF@CNTs/DEG. Finally, the KFSF@CNTs/DEG//graphite full cell displays a large energy density of ∼243 Wh kg-1. Such simple route to KFSF@CNTs/DEG highlights the robustness of creating inexpensive CNTs-interwoven polyanionic cathodes for high-performance PIBs.

15.
Sci Bull (Beijing) ; 67(2): 151-160, 2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36546008

RESUMO

SnS has been extensively investigated as a potential anode material in potassium-ion batteries (PIBs) for its high theoretical capacity. Nonetheless, it suffers a limited cyclic lifespan owing to its poor electronic conductivity and huge volume expansion. This work proposed a facile approach where SnS nanocrystals are confined in the walls of hollow multichannel carbon nanofibers (denoted SnS@HMCFs) to tackle the issues above. In contrast to previous studies, impregnated ultrafine SnS nanocrystals in HMCFs compactly can increase the SnS loading number per unit area of the carbon matrix. Furthermore, the unique hollow multichannel carbon nanofibers are used as a robust carrier to uniformly distribute the SnS nanocrystals. This can significantly accelerate K+/electron transport, resulting in large specific capacity, outstanding rate performance, and steady cycling property for PIBs. High reversible capacities of 415.5 mAh g-1 at 0.1 A g-1 after 300 cycles and 245.5 mAh g-1 at 1 A g-1 after 1000 cycles are retained, suggesting great potential of SnS@HMCFs as a negative electrode material for PIBs. Additionally, when the SnS@HMCF anode is assembled with the KVPO4F cathode, the obtained full cell shows a large discharge capacity of 165.3 mAh g-1 after 200 cycles at 0.1 A g-1.

16.
ACS Omega ; 7(42): 37078-37084, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36312338

RESUMO

As a narrow band semiconductor at room temperature and a metallic material above ∼68 °C, functional VO2 films are widely investigated for smart windows, whereas their potential for ultraviolet-visible-infrared (UV-vis-IR) broad spectral photodetectors has not been efficiently studied. In this report, photodetectors based on VO2-ZnO nanocrystal composite films were prepared by nanocrystal-mist (NC-mist) deposition. An enhanced photodetection switching ratio was achieved covering the ultraviolet to infrared wavelength. Due to the synergetic effect of nanosize, surface, phase transition, percolation threshold, and the band structure of the heterojunction, the transfer and transport of photogenerated carriers modulate the device performance. This study probes new chances of applying VO2-semiconductor-based nanocomposites for broad spectral photodetectors.

17.
Chemistry ; 28(39): e202200053, 2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35650650

RESUMO

The design and synthesis of metallic nanocatalysts with distinct nanostructures and composition is still a noteworthy topic in the electrochemistry field. In this work, we have realized the morphological evolution of PdIr nanostructures in aqueous solution through the synergistic effect of self-assembled functional surfactants and different halide ions, and achieved precise control of the kinetic and thermodynamic crystalline growth due to the different reduction potential between PdCl4 2- , PdBr4 2- , and PdI4 2- . The actual precursors of PdCl4 2- resulted in ultrathin nanodendrites, PdClx Br(4-x) 2- for nanosheets and fewer branched nanodendrites, PdClx I(4-x) 2- for nanorings, nanoflowers and multiply concave nanocubes. Owing to the synergistic advantages of structure and composition (alloyed Ir), PdIr nanodendrites exhibited enhanced electrocatalytic activity, anti-poisoning ability, and stability toward alcohols (including ethanol, methanol, and glycerol) electrooxidation reactions. The results would be helpful for thoroughly understanding how structure-directing surfactants and halide ions synergistically determine the production of advanced metallic nanocrystals.

18.
Inorg Chem ; 60(16): 11878-11882, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34347464

RESUMO

The N-N bond structure of the key intermediate in the reported catalytic ammonia production (Nature 2019, 568, 536-540) should be described as containing a N-N double bond, instead of containing a N-N triple bond. Two 3c-delocalized bonds are found in this fragment. The analysis of the oxidation states reveal that the N reduction is achieved mainly during the step of N-N bond cleavage; SmI2-ROH reduction steps reduce Mo atoms and add protons to N atoms without changing their oxidation states. The catalytic cycle is thermodynamically investigated using the DFT method, revealing that the rate-determining step is the reductive formation of the first N-H bond and the nitrogen reduction occurs mainly in the N-N cleavage step. In addition, linear relationships between vibrational stretching frequencies, effective nuclear charges (Z*), and bond dissociation energy (E0) of a Mo-N bond are also developed.

19.
Small ; 17(28): e2101403, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34106510

RESUMO

All-Inorganic perovskite CsPbX3 (X = Cl, Br, I) quantum dots (QDs) have attracted tremendous attention in the past few years for their appealing performance in optoelectronic applications. Major properties of CsPbX3 QDs include the positive photoconductivity (PPC) and the defect tolerance of the in-band trap states. Here it is reported that when hybridizing CsPbX3 QDs with indium tin oxide (ITO) nanocrystals to form CsPbX3 -ITO nano-heterojunctions (NHJs), a voltage tuned photoresponse-from PPC to negative photoconductivity (NPC) transform-is achieved in lateral drain-source structured ITO/CsPbX3 -ITO-NHJs/ITO devices. A model combining exciton, charge separation, transport, and most critical the voltage driven electron filling of the in-band trap states with drain-source voltage (VDS ) above a threshold, is proposed to understand this unusual PPC-NPC transform mechanism, which is different from that of any known nanomaterial system. This finding exhibits potentials for developing devices such as photodetectors, optoelectronic switches, and memories.


Assuntos
Pontos Quânticos , Compostos de Estanho
20.
Chemistry ; 27(43): 11175-11182, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34019322

RESUMO

In this work, a facile aqueous synthesis strategy was used (complete in 5 min at room temperature) to produce large-size Pd, PdCu, and PdPtCu nanomeshes without additional organic ligands or solvent and the volume restriction of reaction solution. The obtained metallic nanomeshes possess graphene-like morphology and a large size of dozens of microns. Abundant edges (coordinatively unsaturated sites, steps, and corners), defects (twins), and mesopores are seen in the metallic ultrathin structures. The formation mechanism for porous Pd nanomeshes disclosed that they undergo oriented attachment growth along the ⟨111⟩ direction. Owing to structural and compositional advantages, PdCu porous nanomeshes with certain elemental ratios (e. g., Pd87 Cu13 ) presented enhanced electrocatalytic performance (larger mass activity, better CO tolerance and stability) toward ethanol oxidation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA