Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Neurosci ; 17: 1234049, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37790588

RESUMO

Objective: Hypoxic-ischemic encephalopathy can lead to lifelong morbidity and premature death in full-term newborns. Here, we aimed to determine the efficacy of diffusion kurtosis (DK) [mean kurtosis (MK)] and diffusion tensor (DT) [fractional anisotropy (FA), mean diffusion (MD), axial diffusion (AD), and radial diffusion (RD)] parameters for the early diagnosis of early brain histopathological changes and the prediction of neurodegenerative events in a full-term neonatal hypoxic-ischemic brain injury (HIBD) rat model. Methods: The HIBD model was generated in postnatal day 7 Sprague-Dawley rats to assess the changes in DK and DT parameters in 10 specific brain structural regions involving the gray matter, white matter, and limbic system during acute (12 h) and subacute (3 d and 5 d) phases after hypoxic ischemia (HI), which were validated against histology. Sensory and cognitive parameters were assessed by the open field, novel object recognition, elevated plus maze, and CatWalk tests. Results: Repeated-measures ANOVA revealed that specific brain structures showed similar trends to the lesion, and the temporal pattern of MK was substantially more varied than DT parameters, particularly in the deep gray matter. The change rate of MK in the acute phase (12 h) was significantly higher than that of DT parameters. We noted a delayed pseudo-normalization for MK. Additionally, MD, AD, and RD showed more pronounced differences between males and females after HI compared to MK, which was confirmed in behavioral tests. HI females exhibited anxiolytic hyperactivity-like baseline behavior, while the memory ability of HI males was affected in the novel object recognition test. CatWalk assessments revealed chronic deficits in limb gait parameters, particularly the left front paw and right hind paw, as well as poorer performance in HI males than HI females. Conclusions: Our results suggested that DK and DT parameters were complementary in the immature brain and provided great value in assessing early tissue microstructural changes and predicting long-term neurobehavioral deficits, highlighting their ability to detect both acute and long-term changes. Thus, the various diffusion coefficient parameters estimated by the DKI model are powerful tools for early HIBD diagnosis and prognosis assessment, thus providing an experimental and theoretical basis for clinical treatment.

2.
Quant Imaging Med Surg ; 13(10): 6412-6423, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37869353

RESUMO

Background: Preterm infants with necrotizing enterocolitis (NEC) are at high risk of adverse neurodevelopmental outcomes. The aim of this study was to explore the value of diffusion tensor imaging (DTI) combined with serum C-reactive protein (CRP) and procalcitonin (PCT) in evaluating alterations of white matter (WM) microstructure in preterm infants with NEC. Methods: A retrospective cross-sectional study was conducted in which all participants were consecutively enrolled at The Third Affiliated Hospital of Zhengzhou University from June 2017 and October 2021. Data from 30 preterm infants with NEC [mean gestational age at birth 31.41±1.15 weeks; mean age at magnetic resonance imaging (MRI) 37.53±3.08 weeks] and 40 healthy preterm infants with no NEC were recorded (mean gestational age at birth 32.27±2.09 weeks; mean age at MRI 37.15±3.23 weeks). WM was used to obtain the fractional anisotropy (FA) and mean diffusivity (MD) values of the regions of interest (ROIs). Additionally, serum levels of CRP and PCT were determined. Spearman correlation analysis was performed between the WM-derived parameters, CRP level, and the PCT serum index. Results: Preterm infants with NEC had reduced FA values and elevated MD values in WM regions [posterior limbs of the internal capsule (PLIC), lentiform nucleus (LN), frontal white matter (FWM)] compared to the control group (P<0.05). Additionally, the FA of the PLIC was negatively correlated with serum CRP (r=-0.846; P<0.05) and PCT (r=-0.843; P<0.05). Meanwhile, the MD of PLIC was positively correlated with serum CRP (r=0.743; P<0.05) and PCT (r=0.743; P<0.05, respectively). The area under the curve (AUC) of FA and MD combined with CRP and PCT in the diagnosis of WM microstructure alterations with NEC was 0.968, representing a considerable improvement in predicted efficacy over single indicators, including FA [AUC: 0.938; 95% confidence interval (CI): 0.840-0.950], MD (AUC: 0.807; 95% CI: 0.722-0.838), CRP (AUC: 0.867; 95% CI: 0.822-0.889), and PCT (AUC: 0.706; 95% CI: 0.701-0.758). Conclusions: WM can noninvasively and quantitatively assess the WM microstructure alterations in preterm infants with NEC. WM combined with serum CRP and PCT demonstrated superior performance in detecting and evaluating WM microstructure alterations in preterm infants with NEC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA