Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 11(8)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37630564

RESUMO

The dietary composition has been approved to be strongly associated with the risk of colorectal cancer (CRC), one of the most serious malignancies worldwide, through regulating the gut microbiota structure, thereby influencing the homeostasis of colonic epithelial cells by producing carcinogens, i.e., ammonia or antitumor metabolites, like butyrate. Though butyrate-producing Fusobacterium nucleatum has been considered a potential tumor driver associated with chemotherapy resistance and poor prognosis in CRC, it was more frequently identified in the gut microbiota of healthy individuals rather than CRC tumor tissues. First, within the concentration range tested, the fermentation broth of F. nucleatum exhibited no significant effects on Caco-2 and NCM460 cells viability except for a notable up-regulation of the expression of TLR4 (30.70%, p < 0.0001) and Myc (47.67%, p = 0.021) and genes encoding proinflammatory cytokines including IL1B (197.57%, p < 0.0001), IL6 (1704.51%, p < 0.0001), and IL8 (897.05%, p < 0.0001) in Caco-2 cells exclusively. Although no marked effects of polydextrose or fibersol-2 on the growth of F. nucleatum, Caco-2 and NCM460 cells were observed, once culture media supplemented with polydextrose or fibersol-2, the corresponding fermentation broths of F. nucleatum significantly inhibited the growth of Caco-2 cells up to 48.90% (p = 0.0003, 72 h, 10%) and 52.96% (p = 0.0002, 72 h, 10%), respectively in a dose-dependent manner. These two kinds of fibers considerably promoted butyrate production of F. nucleatum up to 205.67% (p < 0.0001, 6% polydextrose at 24 h) and 153.46% (p = 0.0002, 6% fibersol-2 at 12 h), which explained why and how the fermentation broths of F. nucleatum cultured with fibers suppressing the growth of Caco-2 cells. Above findings indicated that dietary fiber determined F. nucleatum to be a carcinogenic or antitumor bacterium, and F. nucleatum played an important role in the association between the dietary composition, primarily the content of dietary fibers, and the risk of CRC.

2.
Nano Lett ; 21(21): 9115-9123, 2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34723551

RESUMO

Drug resistance remains the dominant impediment for cancer therapy, not only because compensatory drug resistance pathways are always activated, but also because of the cross-resistance of cancer cells to unrelated therapeutics. Herein, chemodrug-sensitive cancer cells, intrinsic drug-resistant cells, and acquired resistant cells were employed to uncover their biological response to a nanoparticle-based photodynamic method in tumoral, cellular, and molecular levels. We observed that nanoparticle-based photodynamic process with high therapeutic efficiency, intracellular delivery, and tumor penetration effect resulted in the indiscriminate and significant therapeutic outcome, in contrast to the diversiform effect of first-line chemo-drug, Temozolomide (TMZ). By real-time quantitative PCR array technique, we revealed that signals in classical resistance pathways were unaffected or downregulated, and photodynamic effect initiates cell apoptosis via downstream genes. The discovery that nanoparticulate photodynamic therapy bypasses the signals in multiple resistant pathways may imply an alternative route for combating drug resistance of cancer.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Nanopartículas , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Apoptose , Neoplasias Encefálicas/tratamento farmacológico , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Glioblastoma/patologia , Humanos , Temozolomida/farmacologia , Temozolomida/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA