Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Eur J Med Res ; 28(1): 255, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37496049

RESUMO

OBJECTIVE: The objective of this study is to investigate potential biomarkers of Crohn's disease (CD) and the pathological importance of infiltration of associated immune cells in disease development using machine learning. METHODS: Three publicly accessible CD gene expression profiles were obtained from the GEO database. Inflammatory tissue samples were selected and differentiated between colonic and ileal tissues. To determine the differentially expressed genes (DEGs) between CD and healthy controls, the larger sample size was merged as a training unit. The function of DEGs was comprehended through disease enrichment (DO) and gene set enrichment analysis (GSEA) on DEGs. Promising biomarkers were identified using the support vector machine-recursive feature elimination and lasso regression models. To further clarify the efficacy of potential biomarkers as diagnostic genes, the area under the ROC curve was observed in the validation group. Additionally, using the CIBERSORT approach, immune cell fractions from CD patients were examined and linked with potential biomarkers. RESULTS: Thirty-four DEGs were identified in colon tissue, of which 26 were up-regulated and 8 were down-regulated. In ileal tissues, 50 up-regulated and 50 down-regulated DEGs were observed. Disease enrichment of colon and ileal DEGs primarily focused on immunity, inflammatory bowel disease, and related pathways. CXCL1, S100A8, REG3A, and DEFA6 in colon tissue and LCN2 and NAT8 in ileum tissue demonstrated excellent diagnostic value and could be employed as CD gene biomarkers using machine learning methods in conjunction with external dataset validation. In comparison to controls, antigen processing and presentation, chemokine signaling pathway, cytokine-cytokine receptor interactions, and natural killer cell-mediated cytotoxicity were activated in colonic tissues. Cytokine-cytokine receptor interactions, NOD-like receptor signaling pathways, and toll-like receptor signaling pathways were activated in ileal tissues. NAT8 was found to be associated with CD8 T cells, while CXCL1, S100A8, REG3A, LCN2, and DEFA6 were associated with neutrophils, indicating that immune cell infiltration in CD is closely connected. CONCLUSION: CXCL1, S100A8, REG3A, and DEFA6 in colonic tissue and LCN2 and NAT8 in ileal tissue can be employed as CD biomarkers. Additionally, immune cell infiltration is crucial for CD development.


Assuntos
Doença de Crohn , Humanos , Doença de Crohn/diagnóstico , Doença de Crohn/genética , Colo , Biologia Computacional , Citocinas , Receptores de Citocinas , Biomarcadores
2.
J Org Chem ; 88(6): 3975-3980, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36847637

RESUMO

A visible-light-driven deoxygenative cross-coupling of alcohols with sulfonyl oxime ethers has been developed by using xanthate salts as alcohol-activating groups. Upon convenient generation and direct photoexcitation of xanthate anions, a broad range of alcohols including primary ones can efficiently undergo this transformation to afford diverse oxime ethers and derivatives. This one-pot protocol features mild conditions, broad substrate scope, and late-stage applicability, without the need for any external photocatalysts or electron donor-acceptor complex formation.

3.
Front Plant Sci ; 13: 950103, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35991405

RESUMO

Chinese jujube (Ziziphus jujuba) is a vital economic tree native to China. Jujube fruit with abundant L-Ascorbic Acid (AsA) is an ideal material for studying the mechanism of AsA biosynthesis and metabolism. However, the key transcription factors regulating AsA anabolism in jujube have not been reported. Here, we used jujube variety "Mazao" as the experimental material, conducted an integrative analysis of transcriptome and metabolome to investigate changes in differential genes and metabolites, and find the key genes regulating AsA during jujube fruit growth. The results showed that AsA was mostly synthesized in the young stage and enlargement stage, ZjMDHAR gene takes an important part in the AsA recycling. Three gene networks/modules were highly correlated with AsA, among them, three genes were identified as candidates controlling AsA, including ZjERF17 (LOC107404975), ZjbZIP9 (LOC107406320), and ZjGBF4 (LOC107421670). These results provide new directions and insights for further study on the regulation mechanism of AsA in jujube.

4.
IET Nanobiotechnol ; 15(5): 512-518, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34694757

RESUMO

Silver nanomaterials have become important research topics in recent years. As a new type of fluorescent material, silver nanomaterials have been applied to fluorescent sensors, bioimaging and materials targeting cancer cells. Here, an approach to the oligonucleotide-templated controllable formation of fluorescent Ag nanomaterials is reported. In this experiment, silver nanoparticles (NPs) were synthesised from oligonucleotides chains, sodium borohydride (NaBH4 ) and silver nitrate (AgNO3 ) by changing the molar ratio of DNA to sodium borohydride (NaBH4 ) and silver nitrate (AgNO3 ). Fluorescent assay and transmission electron microscopy were used to characterise the silver NPs. The optimal selection of DNA chains with different lengths as templates for the synthesis of silver NPs was found. This work successfully develops the capping oligonucleotides scaffolds of silver nanoclusters.


Assuntos
Nanopartículas Metálicas , Oligonucleotídeos , Microscopia Eletrônica de Transmissão , Prata , Nitrato de Prata
5.
Nanoscale ; 12(45): 23213-23224, 2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33206083

RESUMO

A green biomass-derived nanoporous carbon network (NCN) has been prepared and integrated with V2O5 sub-micron bricks (SMBs). The large surface area and high pore volume of the NCN can not only provide abundant sites for electrochemical reactions but also stabilize the structure of the V2O5 SMBs. The NCN@V2O5 SMB composite, acting as a novel cathode material, delivers a high areal capacitance of 786 mF cm-2 at 0.2 mA cm-2 and superior cycling stability with 89.5% capacitance retention after 5000 cycles. Besides, the electrode achieves an ultra-high rate capability (82% capacitance retention as the current density increases from 0.2 to 5 mA cm-2) since the contribution from the non-diffusion-controlled process is estimated to be as high as 95.5%-98.5% according to the kinetic analysis. Furthermore, the micropores are more favorable than the mesopores at lower current densities (0.2-2 mA cm-2), while the contribution of the external surface area becomes more significant for current densities higher than 2 mA cm-2. Moreover, an asymmetric supercapacitor assembled using this cathode and the NCN anode shows superior electrochemical properties, such as wide operating voltage, long cycle life and large energy density (72.2 µW h cm-2). Their excellent electrochemical features and good eco-friendliness confirm the potential of the NCN@V2O5 SMBs for use as supercapacitors.

6.
Nanomaterials (Basel) ; 9(3)2019 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-30893932

RESUMO

A facile and scalable two-step method (including pyrolysis and magnetron sputtering) is created to prepare a core‒shell structured composite consisting of cotton-derived carbon fibers (CDCFs) and nano-copper. Excellent hydrophobicity (water contact angle = 144°) and outstanding antibacterial activity against Escherichia coli and Staphylococcus aureus (antibacterial ratios of >92%) are achieved for the composite owing to the composition transformation from cellulose to carbon and nano-size effects as well as strong oxidizing ability of oxygen reactive radicals from interactions of nano-Cu with sulfhydryl groups of enzymes. Moreover, the core‒shell material with high electrical conductivity induces the interfacial polarization loss and conduction loss, contributing to a high electromagnetic interference (EMI) shielding effectiveness of 29.3 dB. Consequently, this flexible and multi-purpose hybrid of nano-copper/CDCFs may be useful for numerous applications like self-cleaning wall cladding, EMI shielding layer and antibacterial products.

7.
J Org Chem ; 83(18): 11074-11079, 2018 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-30101585

RESUMO

A novel and environmentally attractive C(sp3)-H azidation of 2-oxindoles involving the formation of a C-N bond was developed. This methodology achieved for the first time 3-azido-2-oxindole construction under metal-free conditions at room temperature via a radical strategy. PhI(OAc)2 was used as the oxidant and Et3N was used as the additive in this transformation. Furthermore, the mechanistic study indicated that this azidation involved a radical process.

8.
Carbohydr Polym ; 189: 371-378, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29580421

RESUMO

A magnetic cellulose aerogel-supported Fe3O4 nanoparticles composite was designed as a highly efficient and eco-friendly catalyst for Fenton-like degradation of Rhodamine B (RhB). The composite (coded as Fe3O4@CA) was formed by embedding well-dispersed Fe3O4 nanoparticles into the 3D structure of cellulose aerogels by virtue of a facile and cheap hydrothermal method. Comparative studies indicate that the RhB decolorization ratio is much higher in co-presence of Fe3O4 and H2O2 than that in presence of Fe3O4 or H2O2 only, revealing that the Fe3O4@CA-catalyzed Fenton-like reaction governed the RhB decolorization process. It was also found that almost 100% RhB removal was achieved in the Fenton-like system. Moreover, the composite exhibited higher catalytic activity than that of the individual Fe3O4 particles. In addition, the Fe3O4@CA catalyst retained ∼97% of its ability to degrade RhB after the six successive degradation experiments, suggesting its excellent reusability. All these merits indicate that the green and low-cost catalyst with strong magnetic responsiveness possesses good potential for H2O2-driven Fenton-like treatment of organic dyestuff wastewater.

9.
J Nanosci Nanotechnol ; 18(6): 4288-4295, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29442776

RESUMO

In order to deal with pollution of organic dyes, magnetic Fe3O4 nanospheres (NPs) with an average diameter of 202 ± 0.5 nm were synthesized by a solvothermal method at 200 °C, and they can efficiently degrade organic dyes (methylene blue (MB), rhodamine B (RhB) and xylenol orange (XO)) aqueous solutions (20 mg/L) within 1 min. Based on this Fenton reagent, Fe3O4 NPs/biomass composite degradation column was made using sawdust as substrate, and it can efficiently degrade organic dyes continually. More importantly, the composite can be regenerated just by an ultrasonic treatment, and its degradation performance almost remains the same.


Assuntos
Nanosferas , Biomassa , Corantes , Azul de Metileno
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA