Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Atmos Environ (1994) ; 278: 119076, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35370436

RESUMO

After the global outbreak of COVID-19, the Chinese government took many measures to control the spread of the virus. The measures led to a reduction in anthropogenic emissions nationwide. Data from a single particle aerosol mass spectrometer in an eastern Chinese megacity (Hangzhou) before, during, and after the COVID-19 lockdown (5 January to February 29, 2020) was used to understand the effect lockdown had on atmospheric particles. The collected single particle mass spectra were clustered into eight categories. Before the lockdown, the proportions of particles ranked in order of: EC (57.9%) < K-SN (13.6%) < Fe-rich (10.2%) < ECOC (6.7%) < K-Na (6.6%) < OC (3.4%) < K-Pb (1.0%) < K-Al (0.7%). During the lockdown period, the EC and Fe-rich particles decreased by 42.8% and 93.2% compared to before lockdown due to reduced vehicle exhaust and industrial activity. By contrast, the K-SN and K-Na particles containing biomass burning tracers increased by 155.2% and 45.2% during the same time, respectively. During the lockdown, the proportions of particles ranked in order of: K-SN (39.7%) < EC (38.1%) < K-Na (11.0%) < ECOC (7.7%) < OC (1.2%) < K-Pb (0.9%) < Fe-rich (0.8%) < K-Al (0.6%). Back trajectory analysis indicated that both inland (Anhui and Shandong provinces) and marine transported air masses may have contributed to the increase in K-SN and K-Na particles during the lockdown, and that increased number of fugitive combustion points (i.e., household fuel, biomass combustion) was a contributing factor. Therefore, the results imply that regional synergistic control measures on fugitive combustion emissions are needed to ensure good air quality.

2.
J Environ Sci (China) ; 95: 14-22, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32653173

RESUMO

A new state-of-the-art indoor smog chamber facility (CAPS-ZJU) has been constructed and characterized at Zhejiang University, which is designed for chemical mechanism evaluation under well-controlled conditions. A series of characterization experiments were performed to validate the well-established experimental protocols, including temperature variation pattern, light spectrum and equivalent intensity (JNO2), injection and mixing performance, as well as gases and particle wall loss. In addition, based on some characterization experiments, the auxiliary wall mechanism has been setup and examined. Fifty chamber experiments were performed across a broad range of experimental scenarios, and we demonstrated the ability to utilize these chamber data for evaluating SAPRC chemical mechanism. It was found that the SAPRC-11 can well predict the O3 formation and NO oxidation for almost all propene runs, with 6 hr Δ(O3 - NO) model error of -3% ± 7%, while the final O3 was underestimated by ~20% for isoprene experiments. As for toluene and p-xylene experiments, it was confirmed that SAPRC-11 has significant improvement on aromatic chemistry than earlier version of SAPRC-07, although the aromatic decay rate was still underestimated to some extent. The model sensitivity test has been carried out, and the most sensitive parameters identified are the initial concentrations of reactants and the light intensity as well as HONO offgasing rate and O3 wall loss rate. All of which demonstrated that CAPS-ZJU smog chamber could derive high quality experimental data, and could provide insights on chamber studies and chemical mechanism development.


Assuntos
Poluentes Atmosféricos/análise , Ozônio/análise , Oxirredução , Smog/análise , Tolueno
3.
Sci Total Environ ; 728: 138671, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32353798

RESUMO

The secondary aerosol formation mechanism in the presence of ammonia (NH3), is poorly understood, especially under high relative humidity (RH) conditions. In this study, a total of seven experiments were conducted from toluene/NOx photo-oxidation in the presence/absence of NH3 under dry (~7% RH) and wet (>60% RH) conditions in a ~3 m3 smog chamber. A series of instruments including gas analysers, scanning mobility particle sizer (SMPS), aerosol mass spectrometry (HR-ToF-AMS) etc. were applied to measure the NOx and O3 concentrations, the mass concentration and chemical composition of secondary aerosol. It was found that NH3 could enhance the mass loading of secondary aerosol, especially under wet condition. However, the presence of NH3 or increasing RH did not have a significant influence on SOA yield. The organic aerosol mass spectrum from AMS showed that the most abundant fragment was at m/z = 44, which was mainly from the fragmentation of carboxylic acids. Compared to the absence of NH3, the fraction of fragment at m/z = 44 and O:C was higher in the presence of NH3, regardless of dry or wet conditions. The highest O:C value of 0.71-0.75 was observed in the presence of NH3 under wet condition, suggesting there could be a synergetic effect between the high RH and the presence of NH3, which jointly contributed to the photochemical aging process of SOA. The N:C increased in the presence of NH3 under both dry and wet conditions, which might be attributed to the carboxylates and organic nitrates formed from the reaction between NH3 and carboxylic acids. The results implied that SOA modelling should consider the role of NH3 and water vapour, which might fill the gap of O:C between laboratory studies and field measurements.

4.
Environ Pollut ; 250: 520-529, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31026699

RESUMO

Haze formation involves many interacting factors, such as secondary aerosol formation, unfavourable synoptic conditions and regional transport. The interaction between these factors complicates scientific understanding of the mechanism behind haze formation. In this study, we investigated the factors resulting in haze events in Longyou, a city located in a basin in China. Aerosol samples of PM2.5 were collected for subsequent chemical composition analysis between 11 January and 5 February 2018. The impacts of wind on PM2.5, SO2 and NO2 concentrations were analysed. Besides, the origin of air parcels and potential sources of PM2.5 were analysed by backward trajectory, potential source contribution function (PSCF) and concentration-weighted trajectories (CWT). Among the water-soluble ions identified, NO3- had the highest concentration, with further analysis demonstrating the haze evolution was mainly driven by the reactions involving NO3- formation. The dramatic increase of nitrate is mainly due to the homogeneous reaction of nitric acid with ammonia, while sulfate is likely due to heterogeneous reactions of NO2, SO2 and NH3. The average wind speed was less than 2 m/s during the aerosol sampling period, which could be considered as a stagnant state. Pollutants emitted by industrial area located in the northeast Longyou were probably brought to observation sites by continuous wind from northeast and accumulated gradually. Air parcels originating from the northeast of Zhejiang province also had large effects on haze pollution in Longyou. Together, our results showed that rapid secondary aerosol formation and unfavourable synoptic conditions are the main factors resulting in haze pollution in Longyou.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/estatística & dados numéricos , Monitoramento Ambiental , Conceitos Meteorológicos , Material Particulado/análise , Aerossóis/análise , China , Cidades , Meteorologia , Nitratos/análise , Óxidos de Nitrogênio/análise , Sulfatos/análise , Vento
5.
Environ Pollut ; 232: 42-54, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28935404

RESUMO

During the 2016 Hangzhou G20 Summit, the chemical composition of submicron particles (PM1) was measured by a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) along with a suite of collocated instruments. The campaign was undertaken between August 5 and September 23, 2016. The impacts of emission controls and meteorological conditions on PM1 chemical composition, diurnal cycles, organic aerosol (OA) source apportionment, size distribution and elemental ratios were characterized in detail. Excluding rainy days, the mean PM1 mass concentration during G20 was 30.3 µg/m3, similar to that observed before G20 (28.6 µg/m3), but much lower than that after G20 (42.7 µg/m3). The aerosol chemistry during the three periods was substantially different. Before G20, high PM1 loading mostly occurred at daytime, with OA accounting for 60.1% of PM1, followed by sulfate (15.6%) and ammonium (9.1%). During G20, the OA fraction decreased from 60.1% to 44.6%, whereas secondary inorganic aerosol (SIA) increased from 31.8% to 49.5%. After G20, SIA dominated high PM1 loading, especially at nighttime. Further analysis showed that the nighttime regional transport might play an unfavorable role in the slight increase of secondary PM1 during G20, while the strict emissions controls were implemented. The OA (O/C = 0.58) during G20 was more aged, 48.7% and 13.7% higher than that before and after G20 respectively. Our study highlighted that the emission controls during G20 were of great success in lowering locally produced aerosol and pollutants, despite of co-existence of nighttime regional transport containing aerosol high in low-volatile organics and sulfate. It was implied that not only are emissions controls on both local and regional scale important, but that the transport of pollutants needs to be sufficiently well accounted for, to ensure the successful implementation of air pollution mitigation campaigns in China.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/estatística & dados numéricos , Monitoramento Ambiental , Material Particulado/análise , Aerossóis/análise , Poluentes Atmosféricos/química , Poluição do Ar/análise , China , Espectrometria de Massas , Material Particulado/química , Estações do Ano , Sulfatos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA