Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Clin Ophthalmol ; 18: 545-563, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38410632

RESUMO

Purpose: To address if corneal biomechanical behavior has a predictive value for the presence of glaucomatous optical neuropathy in eyes with high myopia. Patients and Methods: This observational cross-sectional study included 209 eyes from 108 consecutive patients, divided into four groups: high myopia and primary open-angle glaucoma (POAG) - HMG, n = 53; high myopia without POAG - HMNG, n = 53; non-myopic with POAG - POAG, n = 50; non-myopic and non-POAG- NMNG, n = 53. Biomechanical assessment was made through a Scheimpflug-camera-based technology. Receiver operating characteristic curves were made for the discrimination between groups. Multivariable logistic regression models were performed to address the predictive value of corneal biomechanics for the presence of glaucoma. Results: Areas Under the Receiver Operating Characteristic (AUROCs) above 0.6 were found in 6 parameters applied to discriminate between HMG and HMNG and six parameters to discriminate between POAG and NMNG. The biomechanical models with the highest power of prediction for the presence of glaucoma included 5 parameters with an AUROC of 0.947 for eyes with high myopia and 6 parameters with an AUROC of 0.857 for non-myopic eyes. In the final model, including all eyes, and adjusted for the presence of high myopia, the highest power of prediction for the presence of glaucoma was achieved including eight biomechanical parameters, with an AUROC of 0.917. Conclusion: Corneal biomechanics demonstrated differences in eyes with glaucoma and mainly in myopic eyes. A biomechanical model based on multivariable logistic regression analysis and adjusted for high myopia was built, with an overall probability of 91.7% for the correct prediction of glaucomatous damage.

2.
Med Clin (Barc) ; 162(9): 409-416, 2024 05 17.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-38423940

RESUMO

BACKGROUND AND AIMS: Inflammatory bowel disease (IBD) has been reported to increase the risk of early atherosclerosis even in young patients. Moreover, metabolic dysfunction-associated steatotic liver disease (MASLD), which has been linked to IBD, is a well-recognized but underdiagnosis entity related to cardiovascular risk. We analyze the impact of MASLD in IBD patients' cardiovascular risk through both advanced lipoprotein profile sorted by nuclear magnetic resonance spectroscopy, and carotid artery intima-media thickness (CIMT). METHODS: Cross-sectional cohort study which involves 941 IBD adult outpatients. Of them, 50 patients with IBD who met criteria for MASLD and 50 with IBD without MASLD, matched by sex and age were included. Alterations in CIMT were evaluated considering abnormal measures above the 75th percentile adjusted for sex and age. Specific advanced lipoprotein profile was also carried out. RESULTS: Most of the patients had an abnormal CIMT (58%). MASLD (OR=5.05, CI 95%=1.71-14.92) and female sex (OR=3.32, CI 95%=1.03-10) were significantly associated with CIMT alterations. Dense LDL particles (with high cholesterol composition in general cohort (OR=3.62, 95% CI=1.07-12.19) and high triglycerides density in young subgroup (OR=6.25, 95% CI=1.04-50) but not total LDL cholesterol were associated with CIMT alterations. CONCLUSIONS: MASLD and female sex are associated with early atherosclerosis in IBD patients. Dense LDL particle in combination with vascular imaging findings should be evaluated as non-invasive tools in the management of cardiovascular risk in IBD patients.


Assuntos
Espessura Intima-Media Carotídea , Doenças Inflamatórias Intestinais , Humanos , Masculino , Feminino , Estudos Transversais , Adulto , Doenças Inflamatórias Intestinais/complicações , Pessoa de Meia-Idade , Medição de Risco , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/epidemiologia , Fatores de Risco de Doenças Cardíacas , Fígado Gorduroso/complicações , Fígado Gorduroso/diagnóstico , Fígado Gorduroso/diagnóstico por imagem , Espectroscopia de Ressonância Magnética
3.
Eur J Intern Med ; 120: 99-106, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37872034

RESUMO

BACKGROUND AND AIMS: Controversial data have been reported regarding the prevalence of Non-Alcoholic Fatty Liver Disease (NAFLD) in Inflammatory Bowel Disease (IBD) population and IBD-related risk factors. The aim of the study was to assess the prevalence and risk factors associated with NAFLD and liver fibrosis in IBD participants compared with non-IBD controls. METHODS: Cross-sectional, case-control study including 741 IBD cases and 170 non-IBD controls, matched by sex and age. All participants underwent liver ultrasound, transient elastography and laboratory tests. A logistic regression multivariable analysis was performed adjusting for classic metabolic risk factors and history of systemic steroid use. RESULTS: The prevalence of NAFLD and significant liver fibrosis was 45 % and 10 % in IBD group, and 40 % and 2.9 % in non-IBD group (p = 0.255 and 0.062, respectively). Longer IBD duration (aOR 1.02 95% CI (1.001-1.04)) and older age at IBD diagnosis (aOR 1.02 95 % CI (1.001-1.04)) were independent risk factors for NAFLD in IBD group. Crohn´s Disease was an independent risk factor for significant liver fibrosis in participants with IBD and NAFLD (aOR 3.97 95 % CI (1.78-8.96)). NAFLD occurred at lower BMI levels in IBD group with NAFLD compared to non-IBD group with NAFLD (aOR 0.92 95 % CI (0.87-0.98)). CONCLUSIONS: Although we found no differences in the prevalence of NAFLD and liver fibrosis between IBD group and non-IBD group, our findings suggest that liver fibrosis progression should be closely monitored in patients with concomitant CD and NAFLD, more in particular in those with long standing active disease.


Assuntos
Doença de Crohn , Doenças Inflamatórias Intestinais , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Doença de Crohn/complicações , Doença de Crohn/epidemiologia , Estudos de Casos e Controles , Estudos Transversais , Fatores de Risco , Doenças Inflamatórias Intestinais/complicações , Cirrose Hepática/complicações , Prevalência
4.
Sci Rep ; 13(1): 23061, 2023 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-38155275

RESUMO

Suboptimal vaccine response is a significant concern in patients with Inflammatory Bowel Disease (IBD) receiving biologic drugs. This single-center observational study involved 754 patients with IBD. In Phase I (October 2020-April 2021), 754 IBD participants who had not previously received the SARS-CoV-2 vaccine, underwent blood extraction to assess the seroprevalence of SARS-CoV-2 infection and IBD-related factors. Phase II (May 2021-October 2021) included a subgroup of 52 IBD participants with confirmed previous SARS-CoV-2 infection, who were studied for humoral and cellular response to the SARS-CoV-2 vaccine. In Phase I, treatment with anti-TNF was associated with lower rates of seroconversion (aOR 0.25 95% CI [0.10-0.61]). In Phase II, a significant increase in post-vaccination IgG levels was observed regardless of biologic treatment. However, patients treated with anti-TNF exhibited significantly lower IgG levels compared to those without IBD therapy (5.32 ± 2.47 vs. 7.99 ± 2.59 U/ml, p = 0.042). Following vaccination, a lymphocyte, monocyte, and NK cell activation pattern was observed, with no significant differences between patients receiving biologic drugs and those without IBD treatment. Despite lower seroprevalence and humoral response to the SARS-CoV-2 vaccine in patients treated with anti-TNF, the cellular response to the vaccine did not differ significantly from that patients without IBD therapy.


Assuntos
COVID-19 , Doenças Inflamatórias Intestinais , Humanos , Vacinas contra COVID-19 , Estudos Soroepidemiológicos , Inibidores do Fator de Necrose Tumoral , SARS-CoV-2 , Doenças Inflamatórias Intestinais/tratamento farmacológico , Vacinação , Imunoglobulina G
5.
Stem Cell Reports ; 18(8): 1555-1572, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37557073

RESUMO

This review aims to evaluate the current preclinical state of liver bioengineering, the clinical context for liver cell therapies, the cell sources, the delivery routes, and the results of clinical trials for end-stage liver disease. Different clinical settings, such as inborn errors of metabolism, acute liver failure, chronic liver disease, liver cirrhosis, and acute-on-chronic liver failure, as well as multiple cellular sources were analyzed; namely, hepatocytes, hepatic progenitor cells, biliary tree stem/progenitor cells, mesenchymal stromal cells, and macrophages. The highly heterogeneous clinical scenario of liver disease and the availability of multiple cellular sources endowed with different biological properties make this a multidisciplinary translational research challenge. Data on each individual liver disease and more accurate endpoints are urgently needed, together with a characterization of the regenerative pathways leading to potential therapeutic benefit. Here, we critically review these topics and identify related research needs and perspectives in preclinical and clinical settings.


Assuntos
Hepatopatias , Medicina Regenerativa , Humanos , Medicina Regenerativa/métodos , Transplante de Células-Tronco , Hepatopatias/terapia , Hepatopatias/metabolismo , Fígado/metabolismo , Hepatócitos
6.
J Cell Mol Med ; 26(19): 4949-4958, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36017767

RESUMO

In Europe alone, each year 5500 people require a life-saving liver transplantation, but 18% die before receiving one due to the shortage of donor organs. Whole organ engineering, utilizing decellularized liver scaffolds repopulated with autologous cells, is an attractive alternative to increase the pool of available organs for transplantation. The development of this technology is hampered by a lack of a suitable large-animal model representative of the human physiology and a reliable and continuous cell source. We have generated porcine intrahepatic cholangiocyte organoids from adult stem cells and demonstrate that these cultures remained stable over multiple passages whilst retaining the ability to differentiate into hepatocyte- and cholangiocyte-like cells. Recellularization onto porcine scaffolds was efficient and the organoids homogeneously differentiated, even showing polarization. Our porcine intrahepatic cholangiocyte system, combined with porcine liver scaffold paves the way for developing whole liver engineering in a relevant large-animal model.


Assuntos
Organoides , Alicerces Teciduais , Animais , Células Epiteliais , Matriz Extracelular , Hepatócitos , Humanos , Fígado , Suínos , Engenharia Tecidual
7.
Front Med (Lausanne) ; 9: 875147, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35646956

RESUMO

Liver resections are a significant source of primary human hepatocytes used mainly in artificial liver devices and pharmacological and biomedical studies. However, it is not well known how patient-donor and surgery-dependent factors influence isolated hepatocytes' yield, viability, and function. Hence, we aimed to analyze the impact of all these elements on the outcome of human hepatocyte isolation. Patients and methods: Hepatocytes were isolated from liver tissue from patients undergoing partial hepatectomy using a two-step collagenase method. Hepatocyte viability, cell yield, adhesion, and functionality were measured. In addition, clinical and analytical patient variables were collected and the use or absence of vascular clamping and its type (continuous or intermittent) plus the ischemia times during surgery. Results: Malignant disease, previous chemotherapy, and male gender were associated with lower hepatocyte viability and isolation cell yields. The previous increase in transaminases was also associated with lower yields on isolation and lower albumin production. Furthermore, ischemia secondary to vascular clamping during surgery was inversely correlated with the isolated hepatocyte viability. An ischemia time higher than 15 min was related to adverse effects on viability. Conclusion: Several factors correlated with the patient and the surgery directly influence the success of human hepatocyte isolation from patients undergoing liver resection.

8.
EClinicalMedicine ; 48: 101414, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35582122

RESUMO

Background: BCG vaccination prevents severe childhood tuberculosis (TB) and was introduced in South Africa in the 1950s. It is hypothesised that BCG trains the innate immune system by inducing epigenetic and functional reprogramming, thus providing non-specific protection from respiratory tract infections. We evaluated BCG for reduction of morbidity and mortality due to COVID-19 in healthcare workers in South Africa. Methods: This randomised, double-blind, placebo-controlled trial recruited healthcare workers at three facilities in the Western Cape, South Africa, unless unwell, pregnant, breastfeeding, immunocompromised, hypersensitivity to BCG, or undergoing experimental COVID-19 treatment. Participants received BCG or saline intradermally (1:1) and were contacted once every 4 weeks for 1 year. COVID-19 testing was guided by symptoms. Hospitalisation, COVID-19, and respiratory tract infections were assessed with Cox proportional hazard modelling and time-to-event analyses, and event severity with post hoc Markovian analysis. This study is registered with ClinicalTrials.gov, NCT04379336. Findings: Between May 4 and Oct 23, 2020, we enrolled 1000 healthcare workers with a median age of 39 years (IQR 30-49), 70·4% were female, 16·5% nurses, 14·4% medical doctors, 48·5% had latent TB, and 15·3% had evidence of prior SARS-CoV-2 exposure. Hospitalisation due to COVID-19 occurred in 15 participants (1·5%); ten (66·7%) in the BCG group and five (33·3%) in the placebo group, hazard ratio (HR) 2·0 (95% CI 0·69-5·9, p = 0·20), indicating no statistically significant protection. Similarly, BCG had no statistically significant effect on COVID-19 (p = 0·63, HR = 1·08, 95% CI 0·82-1·42). Two participants (0·2%) died from COVID-19 and two (0·2%) from other reasons, all in the placebo group. Interpretation: BCG did not protect healthcare workers from SARS-CoV-2 infection or related severe COVID-19 disease and hospitalisation. Funding: Funding provided by EDCTP, grant number RIA2020EF-2968. Additional funding provided by private donors including: Mediclinic, Calavera Capital (Pty) Ltd, Thys Du Toit, Louis Stassen, The Ryan Foundation, and Dream World Investments 401 (Pty) Ltd. The computations were enabled by resources in project SNIC 2020-5-524 provided by the Swedish National Infrastructure for Computing (SNIC) at UPPMAX, partially funded by the Swedish Research Council through grant agreement No. 2018-05,973.

9.
J Hepatol ; 76(3): 694-725, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34715263

RESUMO

As one of the most metabolically complex systems in the body, the liver ensures multi-organ homeostasis and ultimately sustains life. Nevertheless, during early postnatal development, the liver is highly immature and takes about 2 years to acquire and develop almost all of its functions. Different events occurring at the environmental and cellular levels are thought to mediate hepatic maturation and function postnatally. The crosstalk between the liver, the gut and its microbiome has been well appreciated in the context of liver disease, but recent evidence suggests that the latter could also be critical for hepatic function under physiological conditions. The gut-liver crosstalk is thought to be mediated by a rich repertoire of microbial metabolites that can participate in a myriad of biological processes in hepatic sinusoids, from energy metabolism to tissue regeneration. Studies on germ-free animals have revealed the gut microbiome as a critical contributor in early hepatic programming, and this influence extends throughout life, mediating liver function and body homeostasis. In this seminar, we describe the microbial molecules that have a known effect on the liver and discuss how the gut microbiome and the liver evolve throughout life. We also provide insights on current and future strategies to target the gut microbiome in the context of hepatology research.


Assuntos
Microbioma Gastrointestinal/fisiologia , Testes de Função Hepática/estatística & dados numéricos , Fígado/crescimento & desenvolvimento , Homeostase/imunologia , Homeostase/fisiologia , Humanos , Fígado/fisiologia , Testes de Função Hepática/métodos
10.
Artigo em Inglês | MEDLINE | ID: mdl-32903631

RESUMO

Rapid developments in Regenerative Medicine and Tissue Engineering has witnessed an increasing drive toward clinical translation of breakthrough technologies. However, the progression of promising preclinical data to achieve successful clinical market authorisation remains a bottleneck. One hurdle for progress to the clinic is the transition from small animal research to advanced preclinical studies in large animals to test safety and efficacy of products. Notwithstanding this, to draw meaningful and reliable conclusions from animal experiments it is critical that the species and disease model of choice is relevant to answer the research question as well as the clinical problem. Selecting the most appropriate animal model requires in-depth knowledge of specific species and breeds to ascertain the adequacy of the model and outcome measures that closely mirror the clinical situation. Traditional reductionist approaches in animal experiments, which often do not sufficiently reflect the studied disease, are still the norm and can result in a disconnect in outcomes observed between animal studies and clinical trials. To address these concerns a reconsideration in approach will be required. This should include a stepwise approach using in vitro and ex vivo experiments as well as in silico modeling to minimize the need for in vivo studies for screening and early development studies, followed by large animal models which more closely resemble human disease. Naturally occurring, or spontaneous diseases in large animals remain a largely untapped resource, and given the similarities in pathophysiology to humans they not only allow for studying new treatment strategies but also disease etiology and prevention. Naturally occurring disease models, particularly for longer lived large animal species, allow for studying disorders at an age when the disease is most prevalent. As these diseases are usually also a concern in the chosen veterinary species they would be beneficiaries of newly developed therapies. Improved awareness of the progress in animal models is mutually beneficial for animals, researchers, human and veterinary patients. In this overview we describe advantages and disadvantages of various animal models including domesticated and companion animals used in regenerative medicine and tissue engineering to provide an informed choice of disease-relevant animal models.

11.
Hepatology ; 72(1): 257-270, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31715015

RESUMO

BACKGROUND AND AIMS: The gap between patients on transplant waiting lists and available donor organs is steadily increasing. Human organoids derived from leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5)-positive adult stem cells represent an exciting new cell source for liver regeneration; however, culturing large numbers of organoids with current protocols is tedious and the level of hepatic differentiation is limited. APPROACH AND RESULTS: Here, we established a method for the expansion of large quantities of human liver organoids in spinner flasks. Due to improved oxygenation in the spinner flasks, organoids rapidly proliferated and reached an average 40-fold cell expansion after 2 weeks, compared with 6-fold expansion in static cultures. The organoids repopulated decellularized liver discs and formed liver-like tissue. After differentiation in spinner flasks, mature hepatocyte markers were highly up-regulated compared with static organoid cultures, and cytochrome p450 activity reached levels equivalent to hepatocytes. CONCLUSIONS: We established a highly efficient method for culturing large numbers of LGR5-positive stem cells in the form of organoids, which paves the way for the application of organoids for tissue engineering and liver transplantation.


Assuntos
Técnicas de Cultura de Células , Proliferação de Células , Hepatócitos/citologia , Regeneração Hepática , Transplante de Fígado , Organoides/citologia , Receptores Acoplados a Proteínas G/biossíntese , Células-Tronco/metabolismo , Engenharia Tecidual , Diferenciação Celular , Células Cultivadas , Humanos
12.
Sci Rep ; 9(1): 3454, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30837559

RESUMO

Human myogenic precursor cells have been isolated and expanded from a number of skeletal muscles, but alternative donor biopsy sites must be sought after in diseases where muscle damage is widespread. Biopsy sites must be relatively accessible, and the biopsied muscle dispensable. Here, we aimed to histologically characterize the cremaster muscle with regard number of satellite cells and regenerative fibres, and to isolate and characterize human cremaster muscle-derived stem/precursor cells in adult male donors with the objective of characterizing this muscle as a novel source of myogenic precursor cells. Cremaster muscle biopsies (or adjacent non-muscle tissue for negative controls; N = 19) were taken from male patients undergoing routine surgery for urogenital pathology. Myosphere cultures were derived and tested for their in vitro and in vivo myogenic differentiation and muscle regeneration capacities. Cremaster-derived myogenic precursor cells were maintained by myosphere culture and efficiently differentiated to myotubes in adhesion culture. Upon transplantation to an immunocompromised mouse model of cardiotoxin-induced acute muscle damage, human cremaster-derived myogenic precursor cells survived to the transplants and contributed to muscle regeneration. These precursors are a good candidate for cell therapy approaches of skeletal muscle. Due to their location and developmental origin, we propose that they might be best suited for regeneration of the rhabdosphincter in patients undergoing stress urinary incontinence after radical prostatectomy.


Assuntos
Músculos Abdominais/citologia , Diferenciação Celular , Separação Celular , Desenvolvimento Muscular , Mioblastos/citologia , Mioblastos/metabolismo , Músculos Abdominais/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Biomarcadores , Separação Celular/métodos , Células Cultivadas , Humanos , Imunofenotipagem , Masculino , Camundongos , Pessoa de Meia-Idade , Modelos Animais , Adulto Jovem
13.
Differentiation ; 106: 49-56, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30878881

RESUMO

The liver stem cell niche is a specialized and dynamic microenvironment with biomechanical and biochemical characteristics that regulate stem cell behavior. This is feasible due to the coordination of a complex network of secreted factors, small molecules, neural, blood inputs and extracellular matrix (ECM) components involved in the regulation of stem cell fate (self-renewal, survival, and differentiation into more mature phenotypes like hepatocytes and cholangiocytes). In this review, we describe and summarize all the major components that play essential roles in the liver stem cell niche, in particular, growth factor signaling and the biomechanical properties of the ECM.


Assuntos
Doença , Matriz Extracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Células-Tronco/citologia , Animais , Diferenciação Celular , Linhagem da Célula , Humanos , Transdução de Sinais , Células-Tronco/metabolismo
14.
Adv Exp Med Biol ; 1077: 421-449, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30357702

RESUMO

Naturally-derived biomaterials have been used for decades in multiple regenerative medicine applications. From the simplest cell microcarriers made of collagen or alginate, to highly complex decellularized whole-organ scaffolds, these biomaterials represent a class of substances that is usually first in choice at the time of electing a functional and useful biomaterial. Hence, in this chapter we describe the several naturally-derived biomaterials used in tissue engineering applications and their classification, based on composition. We will also describe some of the present uses of the generated tissues like drug discovery, developmental biology, bioprinting and transplantation.


Assuntos
Materiais Biocompatíveis , Engenharia Tecidual , Bioimpressão , Biologia do Desenvolvimento , Descoberta de Drogas , Matriz Extracelular , Humanos , Medicina Regenerativa , Alicerces Teciduais , Transplante
15.
Adv Healthc Mater ; 7(21): e1800430, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30230709

RESUMO

For patients with severe kidney or liver failure the best solution is currently organ transplantation. However, not all patients are eligible for transplantation and due to limited organ availability, most patients are currently treated with therapies using artificial kidney and artificial liver devices. These therapies, despite their relative success in preserving the patients' life, have important limitations since they can only replace part of the natural kidney or liver functions. As blood detoxification (and other functions) in these highly perfused organs is achieved by specialized cells, it seems relevant to review the approaches leading to bioengineered organs fulfilling most of the native organ functions. There, the culture of cells of specific phenotypes on adapted scaffolds that can be perfused takes place. In this review paper, first the functions of kidney and liver organs are briefly described. Then artificial kidney/liver devices, bioartificial kidney devices, and bioartificial liver devices are focused on, as well as biohybrid constructs obtained by decellularization and recellularization of animal organs. For all organs, a thorough overview of the literature is given and the perspectives for their application in the clinic are discussed.


Assuntos
Órgãos Bioartificiais , Bioengenharia/métodos , Animais , Humanos , Rim/citologia , Fígado/citologia , Fígado Artificial , Engenharia Tecidual/métodos
16.
Biotechnol Bioeng ; 115(11): 2807-2816, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29959867

RESUMO

Direct reprogramming represents an easy technique to generate induced hepatocytes (iHeps) from somatic cells. However, current protocols are accompanied by several drawbacks as iHeps are heterogenous and lack fully mature phenotypes of primary hepatocytes. Here, we established a polycistronic expression system to induce the direct reprogramming of mouse embryonic fibroblasts towards hepatocytes. The resulting iHeps are homogenous and display key properties of primary hepatocytes, such as expression of hepatocyte markers, albumin secretion, and presence of liver transaminases. iHeps also possess the capacity to repopulate decellularized liver tissue and exhibit enhanced hepatic maturation. As such, we present a novel strategy to generate homogenous and functional iHeps for applications in tissue engineering and cell therapy.


Assuntos
Transplante de Células/métodos , Técnicas de Reprogramação Celular/métodos , Fibroblastos/fisiologia , Hepatócitos/fisiologia , Animais , Diferenciação Celular , Regulação da Expressão Gênica , Hepatopatias/terapia , Camundongos
17.
Gastroenterology ; 154(5): 1258-1272, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29428334

RESUMO

The incidence of liver disease is increasing globally. The only curative therapy for severe end-stage liver disease, liver transplantation, is limited by the shortage of organ donors. In vitro models of liver physiology have been developed and new technologies and approaches are progressing rapidly. Stem cells might be used as a source of liver tissue for development of models, therapies, and tissue-engineering applications. However, we have been unable to generate and maintain stable and mature adult liver cells ex vivo. We review factors that promote hepatocyte differentiation and maturation, including growth factors, transcription factors, microRNAs, small molecules, and the microenvironment. We discuss how the hepatic circulation, microbiome, and nutrition affect liver function, and the criteria for considering cells derived from stem cells to be fully mature hepatocytes. We explain the challenges to cell transplantation and consider future technologies for use in hepatic stem cell maturation, including 3-dimensional biofabrication and genome modification.


Assuntos
Biotecnologia/métodos , Diferenciação Celular , Hepatócitos/fisiologia , Células-Tronco/fisiologia , Animais , Técnicas de Cultura de Células , Células Cultivadas , Hepatócitos/transplante , Humanos , Hepatopatias/patologia , Hepatopatias/fisiopatologia , Hepatopatias/cirurgia , Transplante de Fígado/métodos , Fenótipo , Transplante de Células-Tronco
18.
Stem Cells Transl Med ; 7(3): 271-282, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29473346

RESUMO

Despite advances in ex vivo expansion of cord blood-derived hematopoietic stem/progenitor cells (CB-HSPC), challenges still remain regarding the ability to obtain, from a single unit, sufficient numbers of cells to treat an adolescent or adult patient. We and others have shown that CB-HSPC can be expanded ex vivo in two-dimensional (2D) cultures, but the absolute percentage of the more primitive stem cells decreases with time. During development, the fetal liver is the main site of HSPC expansion. Therefore, here we investigated, in vitro, the outcome of interactions of primitive HSPC with surrogate fetal liver environments. We compared bioengineered liver constructs made from a natural three-dimensional-liver-extracellular-matrix (3D-ECM) seeded with hepatoblasts, fetal liver-derived (LvSt), or bone marrow-derived stromal cells, to their respective 2D culture counterparts. We showed that the inclusion of cellular components within the 3D-ECM scaffolds was necessary for maintenance of HSPC viability in culture, and that irrespective of the microenvironment used, the 3D-ECM structures led to the maintenance of a more primitive subpopulation of HSPC, as determined by flow cytometry and colony forming assays. In addition, we showed that the timing and extent of expansion depends upon the biological component used, with LvSt providing the optimal balance between preservation of primitive CB HSPC and cellular differentiation. Stem Cells Translational Medicine 2018;7:271-282.


Assuntos
Sangue Fetal/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Animais , Técnicas de Cultura de Células/métodos , Proliferação de Células , Células Cultivadas , Furões , Humanos , Células-Tronco , Microambiente Tumoral
19.
Hepatology ; 67(2): 750-761, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28834615

RESUMO

Several three-dimensional cell culture systems are currently available to create liver organoids. In gneral, these systems display better physiologic and metabolic aspects of intact liver tissue compared with two-dimensional culture systems. However, none reliably mimic human liver development, including parallel formation of hepatocyte and cholangiocyte anatomical structures. Here, we show that human fetal liver progenitor cells self-assembled inside acellular liver extracellular matrix scaffolds to form three-dimensional liver organoids that recapitulated several aspects of hepatobiliary organogenesis and resulted in concomitant formation of progressively more differentiated hepatocytes and bile duct structures. The duct morphogenesis process was interrupted by inhibiting Notch signaling, in an attempt to create a liver developmental disease model with a similar phenotype to Alagille syndrome. Conclusion: In the current study, we created an in vitro model of human liver development and disease, physiology, and metabolism, supported by liver extracellular matrix substrata; we envision that it will be used in the future to study mechanisms of hepatic and biliary development and for disease modeling and drug screening. (Hepatology 2018;67:750-761).


Assuntos
Ductos Biliares/embriologia , Fígado/embriologia , Organogênese , Organoides/fisiologia , Animais , Diferenciação Celular , Linhagem da Célula , Matriz Extracelular/metabolismo , Furões , Humanos , Fígado/citologia , Células-Tronco/citologia
20.
Methods Mol Biol ; 1577: 293-305, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29101678

RESUMO

Currently, due to the progress made in the field of regenerative medicine, whole-organ bioengineering is becoming a valid alternative to cope with the shortages of organs for transplantation. In this chapter, we describe the main techniques carried out for pig liver bioengineering, which serves as an essential model for future human liver bioengineering. These include porcine whole-liver decellularization, endothelial and mesenchymal stem cell isolation, porcine ES-derived hepatoblasts, and scaffold recellularization using a bioreactor perfusion system.


Assuntos
Fígado/química , Fígado/citologia , Perfusão/métodos , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Reatores Biológicos , Separação Celular/métodos , Células Cultivadas , Células Endoteliais/citologia , Hepatócitos/citologia , Fígado/anatomia & histologia , Regeneração Hepática , Células-Tronco Mesenquimais/citologia , Suínos , Cordão Umbilical/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA