Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Appl Opt ; 55(27): 7487-96, 2016 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-27661573

RESUMO

A hybrid experimental/numerical method is proposed for predicting the junction temperature distribution in a high-power laser diode (LD) bar with multiple emitters. A commercial water-cooled LD bar with multiple emitters is used to illustrate and validate the proposed method. A unique experimental setup is developed and implemented first to measure the average junction temperatures of the LD bar emitters. After measuring the heat dissipation of the LD bar, the effective heat transfer coefficient of the cooling system is determined inversely from the numerical simulation using the measured average junction temperature and the heat dissipation. The characterized heat dissipation and effective heat transfer coefficient are used to predict the junction temperature distribution over the LD bar numerically under high operating currents. The results are presented in conjunction with the wall-plug efficiency and the center wavelength shift.

2.
Nat Commun ; 7: 10302, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26757675

RESUMO

In present-day high-performance electronic components, the generated heat loads result in unacceptably high junction temperatures and reduced component lifetimes. Thermoelectric modules can, in principle, enhance heat removal and reduce the temperatures of such electronic devices. However, state-of-the-art bulk thermoelectric modules have a maximum cooling flux qmax of only about 10 W cm(-2), while state-of-the art commercial thin-film modules have a qmax <100 W cm(-2). Such flux values are insufficient for thermal management of modern high-power devices. Here we show that cooling fluxes of 258 W cm(-2) can be achieved in thin-film Bi2Te3-based superlattice thermoelectric modules. These devices utilize a p-type Sb2Te3/Bi2Te3 superlattice and n-type δ-doped Bi2Te3-xSex, both of which are grown heteroepitaxially using metalorganic chemical vapour deposition. We anticipate that the demonstration of these high-cooling-flux modules will have far-reaching impacts in diverse applications, such as advanced computer processors, radio-frequency power devices, quantum cascade lasers and DNA micro-arrays.

3.
Rev Sci Instrum ; 86(8): 084701, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26329215

RESUMO

Conventional techniques for characterization of thermoelectric performance require bringing measurement equipment into direct contact with the thermoelectric device, which is increasingly error prone as device size decreases. Therefore, the novel work presented here describes a non-contact technique, capable of accurately measuring the maximum ΔT and maximum heat pumping of mini to micro sized thin film thermoelectric coolers. The non-contact characterization method eliminates the measurement errors associated with using thermocouples and traditional heat flux sensors to test small samples and large heat fluxes. Using the non-contact approach, an infrared camera, rather than thermocouples, measures the temperature of the hot and cold sides of the device to determine the device ΔT and a laser is used to heat to the cold side of the thermoelectric module to characterize its heat pumping capacity. As a demonstration of the general applicability of the non-contact characterization technique, testing of a thin film thermoelectric module is presented and the results agree well with those published in the literature.

4.
Appl Opt ; 51(6): 726-34, 2012 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-22358162

RESUMO

This study reports both analytical and numerical thermal-structural models of polymer Bragg grating (PBG) waveguides illuminated by a light emitting diode (LED). A polymethyl methacrylate (PMMA) Bragg grating (BG) waveguide is chosen as an analysis vehicle to explore parametric effects of incident optical powers and substrate materials on the thermal-structural behavior of the BG. Analytical models are verified by comparing analytically predicted average excess temperatures, and thermally induced axial strains and stresses with numerical predictions. A parametric study demonstrates that the PMMA substrate induces more adverse effects, such as higher excess temperatures, complex axial temperature profiles, and greater and more complicated thermally induced strains in the BG compared with the Si substrate.

5.
Appl Opt ; 49(11): 2079-84, 2010 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-20390008

RESUMO

A modified coupled-mode (CM) model is proposed for the optical behavior of thermally chirped Bragg gratings. The model accounts for the axial gradient in the modulation wavenumber, which has been ignored in the classical CM model. The model is used to characterize the optical behavior of a polymethyl methacrylate-based polymer Bragg grating subjected to nonisothermal conditions. The validity of the proposed method is verified by comparing the results of the modified CM model with those obtained from the exact numerical solution.

6.
Appl Opt ; 46(20): 4357-70, 2007 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-17579690

RESUMO

A fully concatenated thermo-optical model is presented to predict the thermo-optical behavior of an intrinsically heated polymer fiber Bragg grating (PFBG). Coupled-mode theory and heat-conduction theory are first used to determine the axial heat generation and temperature distribution of a PFBG and the transfer matrix method (TMM) is subsequently employed to predict its thermo-optical behavior. The validity of the TMM is corroborated experimentally using an externally heated glass fiber Bragg grating (FBG) with an axially decaying temperature field. The verified model is utilized to investigate the thermo-optical behavior of a poly(methyl methacrylate) (PMMA) FBG. The counteracting thermally driven changes in the refractive index and the grating pitch, respectively, are found to be of comparable magnitude and to result in very modest net shifts in the Bragg wavelengths despite the considerable temperature changes induced by the absorption of the incident light.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA