Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 11(20): e2307232, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38484201

RESUMO

With the ever-growing requirements in the healthcare sector aimed at personalized diagnostics and treatment, continuous and real-time monitoring of relevant parameters is gaining significant traction. In many applications, health status monitoring may be carried out by dedicated wearable or implantable sensing devices only within a defined period and followed by sensor removal without additional risks for the patient. At the same time, disposal of the increasing number of conventional portable electronic devices with short life cycles raises serious environmental concerns due to the dangerous accumulation of electronic and chemical waste. An attractive solution to address these complex and contradictory demands is offered by biodegradable sensing devices. Such devices may be able to perform required tests within a programmed period and then disappear by safe resorption in the body or harmless degradation in the environment. This work critically assesses the design and development concepts related to biodegradable and bioresorbable sensors for healthcare applications. Different aspects are comprehensively addressed, from fundamental material properties and sensing principles to application-tailored designs, fabrication techniques, and device implementations. The emerging approaches spanning the last 5 years are emphasized and a broad insight into the most important challenges and future perspectives of biodegradable sensors in healthcare are provided.


Assuntos
Desenho de Equipamento , Desenho de Equipamento/métodos , Humanos , Dispositivos Eletrônicos Vestíveis , Monitorização Fisiológica/métodos , Monitorização Fisiológica/instrumentação , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Atenção à Saúde
2.
Biosens Bioelectron ; 251: 116034, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38359666

RESUMO

Postoperative complications after pancreatic surgery are frequent and can be life-threatening. Current clinical diagnostic strategies involve time-consuming quantification of α-amylase activity in abdominal drain fluid, which is performed on the first and third postoperative day. The lack of real-time monitoring may delay adjustment of medical treatment upon complications and worsen prognosis for patients. We report a bedside portable droplet-based millifluidic device enabling real-time sensing of drain α-amylase activity for postoperative monitoring of patients undergoing pancreatic surgery. Here, a tiny amount of drain liquid of patient samples is continuously collected and co-encapsulated with a starch reagent in nanoliter-sized droplets to track the fluorescence intensity released upon reaction with α-amylase. Comparing the α-amylase levels of 32 patients, 97 % of the results of the droplet-based millifluidic system matched the clinical data. Our method reduces the α-amylase assay duration to approximately 3 min with the limit of detection 7 nmol/s·L, enabling amylase activity monitoring at the bedside in clinical real-time. The presented droplet-based platform can be extended for analysis of different body fluids, diseases, and towards a broader range of biomarkers, including lipase, bilirubin, lactate, inflammation, or liquid biopsy markers, paving the way towards new standards in postoperative patient monitoring.


Assuntos
Técnicas Biossensoriais , alfa-Amilases Pancreáticas , Humanos , Pancreaticoduodenectomia/efeitos adversos , Fístula Pancreática/diagnóstico , Fístula Pancreática/etiologia , Amilases/análise , alfa-Amilases
3.
Adv Healthc Mater ; 13(11): e2302609, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38227977

RESUMO

The extracellular environment regulates the structures and functions of cells, from the molecular to the tissue level. However, the underlying mechanisms influencing the organization and adaptation of cancer in three-dimensional (3D) environments are not yet fully understood. In this study, the influence of the viscosity of the environment is investigated on the mechanical adaptability of human hepatoma cell (HepG2) spheroids in vitro, using 3D microcapsule reactors formed with droplet-based microfluidics. To mimic the environment with different mechanical properties, HepG2 cells are encapsulated in alginate core-shell reservoirs (i.e., microcapsules) with different core viscosities tuned by incorporating carboxymethylcellulose. The significant changes in cell and spheroid distribution, proliferation, and cytoskeleton are observed and quantified. Importantly, changes in the expression and distribution of F-actin and keratin 8 indicate the relation between spheroid stiffness and viscosity of the surrounding medium. The increase of F-actin levels in the viscous medium can indicate an enhanced ability of tumor cells to traverse dense tissue. These results demonstrate the ability of cancer cells to dynamically adapt to the changes in extracellular viscosity, which is an important physical cue regulating tumor development, and thus of relevance in cancer biology.


Assuntos
Cápsulas , Carcinoma Hepatocelular , Neoplasias Hepáticas , Esferoides Celulares , Humanos , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia , Viscosidade , Células Hep G2 , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Cápsulas/química , Alginatos/química , Proliferação de Células , Actinas/metabolismo , Citoesqueleto/metabolismo
4.
Soft Matter ; 19(44): 8635-8648, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37917007

RESUMO

Active systems - including sperm cells, living organisms like bacteria, fish, birds, or active soft matter systems like synthetic "microswimmers" - are characterized by motility, i.e., the ability to propel using their own "engine". Motility is the key feature that distinguishes active systems from passive or externally driven systems. In a large ensemble, motility of individual species can vary in a wide range. Selecting active species according to their motility represents an exciting and challenging problem. We propose a new method for selecting active species based on their motility using an acoustofluidic setup where highly motile species escape from the acoustic trap. This is demonstrated in simulations and in experiments with self-propelled Janus particles and human sperm. The immediate application of this method is selecting highly motile sperm for medically assisted reproduction (MAR). Due to the tunable acoustic trap, the proposed method is more flexible than the existing passive microfluidic methods. The proposed selection method based on motility can also be applied to other active systems that require selecting highly motile species or removing immotile species.


Assuntos
Sêmen , Espermatozoides , Humanos , Animais , Masculino , Bactérias
5.
Biosens Bioelectron ; 241: 115701, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37757510

RESUMO

We present a portable multiplexed biosensor platform based on the extended gate field-effect transistor and demonstrate its amplified response thanks to gold nanoparticle-based bioconjugates introduced as a part of the immunoassay. The platform comprises a disposable chip hosting an array of 32 extended gate electrodes, a readout module based on a single transistor operating in constant charge mode, and a multiplexer to scan sensing electrodes one-by-one. Although employing only off-the-shelf electronic components, our platform achieves sensitivities comparable to fully customized nanofabricated potentiometric sensors. In particular, it reaches a detection limit of 0.2 fM for the pure molecular assay when sensing horseradish peroxidase-linked secondary antibody (∼0.4 nM reached by standard microplate methods). Furthermore, with the gold nanoparticle bioconjugation format, we demonstrate ca. 5-fold amplification of the potentiometric response compared to a pure molecular assay, at the detection limit of 13.3 fM. Finally, we elaborate on the mechanism of this amplification and propose that nanoparticle-mediated disruption of the diffusion barrier layer is the main contributor to the potentiometric signal enhancement. These results show the great potential of our portable, sensitive, and cost-efficient biosensor for multidimensional diagnostics in the clinical and laboratory settings, including e.g., serological tests or pathogen screening.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Ouro , Técnicas Biossensoriais/métodos , Potenciometria , Imunoensaio , Eletrodos
7.
Front Immunol ; 14: 1204543, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37383226

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) led to millions of infections and deaths worldwide. As this virus evolves rapidly, there is a high need for treatment options that can win the race against new emerging variants of concern. Here, we describe a novel immunotherapeutic drug based on the SARS-CoV-2 entry receptor ACE2 and provide experimental evidence that it cannot only be used for (i) neutralization of SARS-CoV-2 in vitro and in SARS-CoV-2-infected animal models but also for (ii) clearance of virus-infected cells. For the latter purpose, we equipped the ACE2 decoy with an epitope tag. Thereby, we converted it to an adapter molecule, which we successfully applied in the modular platforms UniMAB and UniCAR for retargeting of either unmodified or universal chimeric antigen receptor-modified immune effector cells. Our results pave the way for a clinical application of this novel ACE2 decoy, which will clearly improve COVID-19 treatment.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Humanos , Enzima de Conversão de Angiotensina 2 , Tratamento Farmacológico da COVID-19
8.
Biotechnol J ; 18(6): e2200365, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36942860

RESUMO

Functional interaction between cancer cells and the surrounding microenvironment is still not sufficiently understood, which motivates the tremendous interest for the development of numerous in vitro tumor models. Diverse parameters, for example, transport of nutrients and metabolites, availability of space in the confinement, etc. make an impact on the size, shape, and metabolism of the tumoroids. We demonstrate the fluidics-based low-cost methodology to reproducibly generate the alginate and alginate-chitosan microcapsules and apply it to grow human hepatoma (HepG2) spheroids of different dimensions and geometries. Focusing specifically on the composition and thickness of the hydrogel shell, permeability of the microcapsules was selectively tuned. The diffusion of the selected benchmark molecules through the shell has been systematically investigated using both, experiments and simulations, which is essential to ensure efficient mass transfer and/or filtering of the biochemical species. Metabolic activity of spheroids in microcapsules was confirmed by tracking the turnover of testosterone to androstenedione with chromatography studies in a metabolic assay. Depending on available space, phenotypically different 3D cell assemblies have been observed inside the capsules, varying in the tightness of cell aggregations and their shapes. Conclusively, we believe that our system with the facile tuning of the shell thickness and permeability, represents a promising platform for studying the formation of cancer spheroids and their functional interaction with the surrounding microenvironment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Cápsulas/química , Alginatos/química , Microambiente Tumoral
9.
Micromachines (Basel) ; 14(3)2023 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-36985052

RESUMO

Bacteria primarily live in structured environments, such as colonies and biofilms, attached to surfaces or growing within soft tissues. They are engaged in local competitive and cooperative interactions impacting our health and well-being, for example, by affecting population-level drug resistance. Our knowledge of bacterial competition and cooperation within soft matrices is incomplete, partly because we lack high-throughput tools to quantitatively study their interactions. Here, we introduce a method to generate a large amount of agarose microbeads that mimic the natural culture conditions experienced by bacteria to co-encapsulate two strains of fluorescence-labeled Escherichia coli. Focusing specifically on low bacterial inoculum (1-100 cells/capsule), we demonstrate a study on the formation of colonies of both strains within these 3D scaffolds and follow their growth kinetics and interaction using fluorescence microscopy in highly replicated experiments. We confirmed that the average final colony size is inversely proportional to the inoculum size in this semi-solid environment as a result of limited available resources. Furthermore, the colony shape and fluorescence intensity per colony are distinctly different in monoculture and co-culture. The experimental observations in mono- and co-culture are compared with predictions from a simple growth model. We suggest that our high throughput and small footprint microbead system is an excellent platform for future investigation of competitive and cooperative interactions in bacterial communities under diverse conditions, including antibiotics stress.

10.
ACS Sens ; 8(2): 576-586, 2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36763494

RESUMO

Detection of antigens and antibodies (Abs) is of great importance in determining the infection and immunity status of the population, as they are key parameters guiding the handling of pandemics. Current point-of-care (POC) devices are a convenient option for rapid screening; however, their sensitivity requires further improvement. We present an interdigitated gold nanowire-based impedance nanobiosensor to detect COVID-19-associated antigens (receptor-binding domain of S1 protein of the SARS-CoV-2 virus) and respective Abs appearing during and after infection. The electrochemical impedance spectroscopy technique was used to assess the changes in measured impedance resulting from the binding of respective analytes to the surface of the chip. After 20 min of incubation, the sensor devices demonstrate a high sensitivity of about 57 pS·sn per concentration decade and a limit of detection (LOD) of 0.99 pg/mL for anti-SARS-CoV-2 Abs and a sensitivity of around 21 pS·sn per concentration decade and an LOD of 0.14 pg/mL for the virus antigen detection. Finally, the analysis of clinical plasma samples demonstrates the applicability of the developed platform to assist clinicians and authorities in determining the infection or immunity status of the patients.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Limite de Detecção , Anticorpos Antivirais , Sistemas Automatizados de Assistência Junto ao Leito
11.
ACS Biomater Sci Eng ; 9(5): 2140-2147, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-34519484

RESUMO

In the midst of the COVID-19 pandemic, adaptive solutions are needed to allow us to make fast decisions and take effective sanitation measures, e.g., the fast screening of large groups (employees, passengers, pupils, etc.). Although being reliable, most of the existing SARS-CoV-2 detection methods cannot be integrated into garments to be used on demand. Here, we report an organic field-effect transistor (OFET)-based biosensing device detecting of both SARS-CoV-2 antigens and anti-SARS-CoV-2 antibodies in less than 20 min. The biosensor was produced by functionalizing an intrinsically stretchable and semiconducting triblock copolymer (TBC) film either with the anti-S1 protein antibodies (S1 Abs) or receptor-binding domain (RBD) of the S1 protein, targeting CoV-2-specific RBDs and anti-S1 Abs, respectively. The obtained sensing platform is easy to realize due to the straightforward fabrication of the TBC film and the utilization of the reliable physical adsorption technique for the molecular immobilization. The device demonstrates a high sensitivity of about 19%/dec and a limit of detection (LOD) of 0.36 fg/mL for anti-SARS-Cov-2 antibodies and, at the same time, a sensitivity of 32%/dec and a LOD of 76.61 pg/mL for the virus antigen detection. The TBC used as active layer is soft, has a low modulus of 24 MPa, and can be stretched up to 90% with no crack formation of the film. The TBC is compatible with roll-to-roll printing, potentially enabling the fabrication of low-cost wearable or on-skin diagnostic platforms aiming at point-of-care concepts.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Pandemias , COVID-19/diagnóstico , Adsorção , Polímeros
12.
Front Microbiol ; 14: 1294790, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38192289

RESUMO

Introduction: Bacterial strains that are resistant to antibiotics may protect not only themselves, but also sensitive bacteria nearby if resistance involves antibiotic degradation. Such cross-protection poses a challenge to effective antibiotic therapy by enhancing the long-term survival of bacterial infections, however, the current understanding is limited. Methods: In this study, we utilize an automated nanoliter droplet analyzer to study the interactions between Escherichia coli strains expressing a ß-lactamase (resistant) and those not expressing it (sensitive) when exposed to the ß-lactam antibiotic cefotaxime (CTX), with the aim to define criteria contributing to cross-protection. Results: We observed a cross-protection window of CTX concentrations for the sensitive strain, extending up to approximately 100 times its minimal inhibitory concentration (MIC). Through both microscopy and enzyme activity analyses, we demonstrate that bacterial filaments, triggered by antibiotic stress, contribute to cross-protection. Discussion: The antibiotic concentration window for cross-protection depends on the difference in ß-lactamase activity between co-cultured strains: larger differences shift the 'cross-protection window' toward higher CTX concentrations. Our findings highlight the dependence of opportunities for cross-protection on the relative resistance levels of the strains involved and suggest a possible specific role for filamentation.

13.
Front Neurosci ; 16: 875656, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35720700

RESUMO

Many biomarkers including neurotransmitters are found in external body fluids, such as sweat or saliva, but at lower titration levels than they are present in blood. Efficient detection of such biomarkers thus requires, on the one hand, to use techniques offering high sensitivity, and, on the other hand, to use a miniaturized format to carry out diagnostics in a minimally invasive way. Here, we present the hybrid integration of bottom-up silicon-nanowire Schottky-junction FETs (SiNW SJ-FETs) with complementary-metal-oxide-semiconductor (CMOS) readout and amplification electronics to establish a robust biosensing platform with 32 × 32 aptasensor measurement sites at a 100 µm pitch. The applied hetero-junctions yield a selective biomolecular detection down to femtomolar concentrations. Selective and multi-site detection of dopamine is demonstrated at an outstanding sensitivity of ∼1 V/fM. The integrated platform offers great potential for detecting biomarkers at high dilution levels and could be applied, for example, to diagnosing neurodegenerative diseases or monitoring therapy progress based on patient samples, such as tear liquid, saliva, or eccrine sweat.

14.
J Clin Med ; 11(9)2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35566534

RESUMO

The number of patients in intensive care units has increased over the past years. Critically ill patients are treated with a real time support of the instruments that offer monitoring of relevant blood parameters. These parameters include blood gases, lactate, and glucose, as well as pH and temperature. Considering the COVID-19 pandemic, continuous management of dynamic deteriorating parameters in patients is more relevant than ever before. This narrative review aims to summarize the currently available literature regarding real-time monitoring of blood parameters in intensive care. Both, invasive and non-invasive methods are described in detail and discussed in terms of general advantages and disadvantages particularly in context of their use in different medical fields but especially in critical care. The objective is to explicate both, well-known and frequently used as well as relatively unknown devices. Furtehrmore, potential future direction in research and development of realtime sensor systems are discussed. Therefore, the discussion section provides a brief description of current developments in biosensing with special emphasis on their technical implementation. In connection with these developments, the authors focus on different electrochemical approaches to invasive and non-invasive measurements in vivo.

15.
Biosens Bioelectron ; 206: 114124, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35272215

RESUMO

Immunotherapy using CAR-T cells is a new technological paradigm for cancer treatment. To avoid severe side effects and tumor escape variants observed for conventional CAR-T cells approach, adaptor CAR technologies are under development, where intermediate target modules redirect immune cells against cancer. In this work, silicon nanowire field-effect transistors are used to develop target modules for an optimized CAR-T cell operation. Focusing on a library of seven variants of E5B9 peptide that is used as CAR targeting epitope, we performed multiplexed binding tests using nanosensor chips. These peptides had been immobilized onto the sensor to compare the transistor signals upon titration with anti-La 5B9 antibodies. The correlation of binding affinities and sensor sensitivities enabled a selection of candidates for the interaction between CAR and target modules. An extremely low detection limit was observed for the sensor, down to femtomolar concentration, outperforming the current assay of the same purpose. Finally, the CAR T-cells redirection capability of selected peptides in target modules was proven successful in an in-vitro cytotoxicity assay. Our results open the perspective for the nanosensors to go beyond the early diagnostics in clinical cancer research towards developing and monitoring immunotherapeutic treatment, where the quantitative analysis with the standard techniques is limited.


Assuntos
Técnicas Biossensoriais , Nanofios , Imunoterapia , Imunoterapia Adotiva/métodos , Linfócitos T
16.
Lab Chip ; 21(8): 1492-1502, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33881032

RESUMO

Understanding competition and cooperation within microbiota is of high fundamental and clinical importance, helping to comprehend species' evolution and biodiversity. We co-encapsulated and cultured two isogenic Escherichia coli strains expressing blue (BFP) and yellow (YFP) fluorescent proteins into numerous emulsion droplets and quantified their growth by employing fluorescence measurements. To characterize and compare the bacterial growth kinetics and behavior in mono and co-culture, we compared the experimental observations with predictions from a simple growth model. Varying the initial ratio (R0) of both cell types injected, we observed a broad landscape from competition to cooperation between both strains in their confined microenvironments depending on start frequency: from a nearly symmetric situation at R0 = 1, up to the domination of one subpopulation when R0 ≫ 1 (or R0 ≪ 1). Due to competition between the strains, their doubling times and final biomass ratios (R1) continuously deviate from the monoculture behavior. The correlation map of the two strains' doubling times reveals that the R0 is one of the critical parameters affecting the competitive interaction between isogenic bacterial strains. Thanks to this strategy, different species of bacteria can be monitored simultaneously in real-time. Further advantages include high statistical output, unaffected bacteria growth, and long-time measurements in a well-mixed environment. We expect that the millifluidic droplet-based reactor can be utilized for practical clinical applications, such as bacterial antibiotic resistance and enzyme reaction kinetics studies.


Assuntos
Farmacorresistência Bacteriana , Escherichia coli , Bactérias , Escherichia coli/genética
17.
Eur Phys J E Soft Matter ; 44(3): 39, 2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33755813

RESUMO

Control over micromotors' motion is of high relevance for lab-on-a-chip and biomedical engineering, wherein such particles encounter complex microenvironments. Here, we introduce an efficient way to influence Janus micromotors' direction of motion and speed by modifying their surface properties and those of their immediate surroundings. We fabricated light-responsive Janus micromotors with positive and negative surface charge, both driven by ionic self-diffusiophoresis. These were used to observe direction-of-motion reversal in proximity to glass substrates for which we varied the surface charge. Quantitative analysis allowed us to extract the dependence of the particle velocity on the surface charge density of the substrate. This constitutes the first quantitative demonstration of the substrate's surface charge on the motility of the light-activated diffusiophoretic motors in water. We provide qualitative understanding of these observations in terms of osmotic flow along the substrate generated through the ions released by the propulsion mechanism. Our results constitute a crucial step in moving toward practical application of self-phoretic artificial micromotors.

18.
ACS Sens ; 5(12): 4081-4091, 2020 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-33270427

RESUMO

Small molecules with no or little charge are considered to have minimal impact on signals measured by field effect transistor (FET) sensors. This fact typically excludes steroids from the family of analytes, detected by FETs. We present a portable multiplexed platform based on an array of nanowire sensors for label-free monitoring of daytime levels of the stress hormone cortisol in saliva samples, obtained from multiple donors. To achieve an effective quantification of the cortisol with FETs, we rely on the specific DNA aptamer sequences as receptors, bringing the complex "target-receptor" closer to the nanowire surface. Upon binding, cortisol induces conformational changes of negatively charged aptamers, wrapping it into a close proximity to the silicon nanowires, to efficiently modulate their surface potential. Thus, the sensors allow for a real-time assessment of the steroid biomarkers at low nanomolar concentration. The measurement platform is designed in a building-block concept, consisting of a modular measuring unit and a customizable biochip board, and operates using a complementary metal-oxide-semiconductor-integrated multiplexer. The platform is capable of continuous and simultaneous measurement of samples from multiple patients. Cortisol levels detected with the presented platform agreed well with the results obtained with a commercial high-sensitivity immunoassay.


Assuntos
Técnicas Biossensoriais , Nanofios , Biomarcadores , Humanos , Saliva , Transistores Eletrônicos
19.
Langmuir ; 36(42): 12504-12512, 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33054235

RESUMO

The shape of objects has a strong influence on their dynamics. Here, we present comparative studies of two different motile objects, spherical Ag/AgCl Janus particles and polystyrene Janus nanorods, that move due to an ionic self-diffusiophoretic propulsion mechanism when exposed to blue light. In this paper, we propose a method to fabricate Janus rodlike particles with high aspect ratios and hemispherical tip shapes. The inherent asymmetry due to the ratio between capped and uncapped parts of the particles as well as the shape anistropy of Janus nanorods enables imaging and quantification of rotational dynamics. The dynamics of microswimmers are compared in terms of velocities and diffusion coefficients. We observe that despite a small amount of the Ag/AgCl reagent on the surface of rodlike objects, these new Janus micromotors reveal high motility in pure water. While the velocities of spherical particles reach 4.2 µm/s, the single rodlike swimmers reach 1.1 µm/s, and clusters reach 1.6 µm/s. The effect of suppressed rotational diffusion is discussed as one of the reasons for the increased velocities. These Janus micro- and nanomotors hold the promise for application in light-controlled propulsion transport.

20.
Mikrochim Acta ; 187(9): 520, 2020 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-32856149

RESUMO

A flexible sensor is presented for electrochemical detection of ascorbic acid in sweat based on single-step modified gold microelectrodes. The modification consists of electrodeposition of alginate membrane with trapped CuO nanoparticles. The electrodes are fabricated at a thin polyimide support and the soft nature of the membrane can withstand mechanical stress beyond requirements for skin monitoring. After characterization of the membrane via optical and scanning electron microscopy and cyclic voltammetry, the oxidative properties of CuO are exploited toward ascorbic acid for amperometric measurement at micromolar levels in neutral buffer and acidic artificial sweat, at ultralow applied potential (- 5 mV vs. Au pseudo-reference electrode). Alternatively, measurement of the horizontal shift of redox peaks by cyclic voltammetry is also possible. Obtaining a limit of detection of 1.97 µM, sensitivity of 0.103 V log (µM)-1 of peak shift, and linear range of 10-150 µM, the effect of possible interfering species present in sweat is minimized, with no observable cross-reaction, thus maintaining a high degree of selectivity despite the absence of enzymes in the fabrication scheme. With a lateral flow approach for sample delivery, repeated measurements show recovery in few seconds, with relative standard deviation of about 20%, which can serve to detect increased loss or absence of vitamin, and yet be improved in future by optimized device designs. This sensor is envisioned as a promising component of wearable devices for e.g. non-invasive monitoring of micronutrient loss through sweat, comprising features of light weight, low cost, and easy fabrication needed for such application. Graphical Abstract Schematic depiction of the cyclic voltammetry signal change as the sweat flows over the sensor surface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA