Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Atr Fibrillation ; 9(2): 1423, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27909533

RESUMO

Catecholaminergic polymorphic ventricular tachycardia (CPVT), an inherited arrhythmia often leading to sudden cardiac death in children and young adults, is characterized by polymorphic/bidirectional ventricular tachycardia induced by adrenergic stimulation associated with emotionally stress or physical exercise. There are two forms of CPVT: 1. CPVT1 is caused by mutations in the RYR2 gene, encoding for ryanodine receptor type 2. CPVT1 is the most common form of CPVT in the population, and is inherited by a dominant mechanism. 2. CPVT2 is caused by mutations in the CASQ2 gene, encoding for cardiac calsequestrin 2 and is inherited by recessive mechanism. Patient-specific induced Pluripotent Stem Cells (iPSC) have the ability to differentiate into cardiomyocytes carrying the patient's genome including CPVT-linked mutations and expressing the disease phenotype in vitro at the cellular level. The potency for in vitro modeling using iPSC-derived cardiomyocytes (iPSC-CMs) has been exploited to investigate a variety of inherited diseases including cardiac arrhythmias such as CPVT. In this review we attempted to cover the majority of CPVT patient specific iPSC research studies previously published. CPVT patient-specific iPSC model enables the in vitro investigation of the molecular and cellular disease-mechanisms by the means of electrophysiologycal and Ca+2 imaging methodologies. Furthermore, this in vitro model allows the screening of various antiarrhythmic drugs, specifically for each patient, also known as "personalized medicine".

2.
J Cell Mol Med ; 19(8): 2006-18, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26153920

RESUMO

Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an inherited arrhythmia characterized by syncope and sudden death occurring during exercise or acute emotion. CPVT is caused by abnormal intracellular Ca(2+) handling resulting from mutations in the RyR2 or CASQ2 genes. Because CASQ2 and RyR2 are involved in different aspects of the excitation-contraction coupling process, we hypothesized that these mutations are associated with different functional and intracellular Ca(²+) abnormalities. To test the hypothesis we generated induced Pluripotent Stem Cell-derived cardiomyocytes (iPSC-CM) from CPVT1 and CPVT2 patients carrying the RyR2(R420Q) and CASQ2(D307H) mutations, respectively, and investigated in CPVT1 and CPVT2 iPSC-CM (compared to control): (i) The ultrastructural features; (ii) the effects of isoproterenol, caffeine and ryanodine on the [Ca(2+) ]i transient characteristics. Our major findings were: (i) Ultrastructurally, CASQ2 and RyR2 mutated cardiomyocytes were less developed than control cardiomyocytes. (ii) While in control iPSC-CM isoproterenol caused positive inotropic and lusitropic effects, in the mutated cardiomyocytes isoproterenol was either ineffective, caused arrhythmias, or markedly increased diastolic [Ca(2+) ]i . Importantly, positive inotropic and lusitropic effects were not induced in mutated cardiomyocytes. (iii) The effects of caffeine and ryanodine in mutated cardiomyocytes differed from control cardiomyocytes. Our results show that iPSC-CM are useful for investigating the similarities/differences in the pathophysiological consequences of RyR2 versus CASQ2 mutations underlying CPVT1 and CPVT2 syndromes.


Assuntos
Calsequestrina/genética , Células-Tronco Pluripotentes Induzidas/patologia , Mutação/genética , Miócitos Cardíacos/patologia , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Taquicardia Ventricular/genética , Taquicardia Ventricular/patologia , Sequência de Bases , Cafeína/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Técnicas de Genotipagem , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/ultraestrutura , Isoproterenol/farmacologia , Dados de Sequência Molecular , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/ultraestrutura , Retículo Sarcoplasmático/efeitos dos fármacos , Retículo Sarcoplasmático/metabolismo , Retículo Sarcoplasmático/ultraestrutura
3.
Can J Cardiol ; 30(11): 1279-87, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25442431

RESUMO

Human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) have the capacity to differentiate into any specialized cell type, including cardiomyocytes. Therefore, hESC-derived and hiPSC-derived cardiomyocytes (hESC-CMs and hiPSC-CMs, respectively) offer great potential for cardiac regenerative medicine. Unlike some organs, the heart has a limited ability to regenerate, and dysfunction resulting from significant cardiomyocyte loss under pathophysiological conditions, such as myocardial infarction (MI), can lead to heart failure. Unfortunately, for patients with end-stage heart failure, heart transplantation remains the main alternative, and it is insufficient, mainly because of the limited availability of donor organs. Although left ventricular assist devices are progressively entering clinical practice as a bridge to transplantation and even as an optional therapy, cell replacement therapy presents a plausible alternative to donor organ transplantation. During the past decade, multiple candidate cells were proposed for cardiac regeneration, and their mechanisms of action in the myocardium have been explored. The purpose of this article is to critically review the comprehensive research involving the use of hESCs and hiPSCs in MI models and to discuss current controversies, unresolved issues, challenges, and future directions.


Assuntos
Células-Tronco Embrionárias/transplante , Cardiopatias/terapia , Células-Tronco Pluripotentes Induzidas/transplante , Miócitos Cardíacos/patologia , Transplante de Células-Tronco/métodos , Diferenciação Celular , Cardiopatias/patologia , Humanos
4.
Heart Rhythm ; 11(10): 1808-1818, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25052725

RESUMO

BACKGROUND: We previously reported that induced pluripotent stem cell-derived cardiomyocytes manifest beat rate variability (BRV) resembling heart rate variability (HRV) in the human sinoatrial node. We now hypothesized the BRV-HRV continuum originates in pacemaker cells. OBJECTIVE: To investigate whether cellular BRV is a source of HRV dynamics, we hypothesized 3 levels of interaction among different cardiomyocyte entities: (1) single pacemaker cells, (2) networks of electrically coupled pacemaker cells, and (3) the in situ sinoatrial node. METHODS: We measured BRV/HRV properties in single pacemaker cells, induced pluripotent stem cell-derived contracting embryoid bodies (EBs), and electrocardiograms from the same individual. RESULTS: Pronounced BRV/HRV was present at all 3 levels. The coefficient of variance of interbeat intervals and Poincaré plot indices SD1 and SD2 for single cells were 20 times greater than those for EBs (P < .05) and the in situ heart (the latter two were similar; P > .05). We also compared BRV magnitude among single cells, small EBs (~5-10 cells), and larger EBs (>10 cells): BRV indices progressively increased with the decrease in the cell number (P < .05). Disrupting intracellular Ca(2+) handling markedly augmented BRV magnitude, revealing a unique bimodal firing pattern, suggesting that intracellular mechanisms contribute to BRV/HRV and the fractal behavior of heart rhythm. CONCLUSION: The decreased BRV magnitude in transitioning from the single cell to the EB suggests that the HRV of in situ hearts originates from the summation and integration of multiple cell-based oscillators. Hence, complex interactions among multiple pacemaker cells and intracellular Ca(2+) handling determine HRV in humans and cardiomyocyte networks.


Assuntos
Eletrocardiografia , Frequência Cardíaca/fisiologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Miócitos Cardíacos/fisiologia , Nó Sinoatrial/fisiologia , Potenciais de Ação/fisiologia , Adulto , Feminino , Voluntários Saudáveis , Humanos , Pessoa de Meia-Idade
5.
Proc Natl Acad Sci U S A ; 110(18): E1685-94, 2013 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-23589888

RESUMO

Proper expression and function of the cardiac pacemaker is a critical feature of heart physiology. Two main mechanisms have been proposed: (i) the "voltage-clock," where the hyperpolarization-activated funny current If causes diastolic depolarization that triggers action potential cycling; and (ii) the "Ca(2+) clock," where cyclical release of Ca(2+) from Ca(2+) stores depolarizes the membrane during diastole via activation of the Na(+)-Ca(2+) exchanger. Nonetheless, these mechanisms remain controversial. Here, we used human embryonic stem cell-derived cardiomyocytes (hESC-CMs) to study their autonomous beating mechanisms. Combined current- and voltage-clamp recordings from the same cell showed the so-called "voltage and Ca(2+) clock" pacemaker mechanisms to operate in a mutually exclusive fashion in different cell populations, but also to coexist in other cells. Blocking the "voltage or Ca(2+) clock" produced a similar depolarization of the maximal diastolic potential (MDP) that culminated by cessation of action potentials, suggesting that they converge to a common pacemaker component. Using patch-clamp recording, real-time PCR, Western blotting, and immunocytochemistry, we identified a previously unrecognized Ca(2+)-activated intermediate K(+) conductance (IK(Ca), KCa3.1, or SK4) in young and old stage-derived hESC-CMs. IK(Ca) inhibition produced MDP depolarization and pacemaker suppression. By shaping the MDP driving force and exquisitely balancing inward currents during diastolic depolarization, IK(Ca) appears to play a crucial role in human embryonic cardiac automaticity.


Assuntos
Células-Tronco Embrionárias/citologia , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/metabolismo , Nó Sinoatrial/citologia , Nó Sinoatrial/metabolismo , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Linhagem Celular , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/metabolismo , Humanos , Modelos Cardiovasculares , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Pirazóis/farmacologia , Pirimidinas/farmacologia , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Nó Sinoatrial/efeitos dos fármacos , Tioureia/análogos & derivados , Tioureia/farmacologia
6.
Circulation ; 125(7): 883-93, 2012 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-22261196

RESUMO

BACKGROUND: The sinoatrial node is the main impulse-generating tissue in the heart. Atrioventricular conduction block and arrhythmias caused by sinoatrial node dysfunction are clinically important and generally treated with electronic pacemakers. Although an excellent solution, electronic pacemakers incorporate limitations that have stimulated research on biological pacing. To assess the suitability of potential biological pacemakers, we tested the hypothesis that the spontaneous electric activity of human embryonic stem cell-derived cardiomyocytes (hESC-CMs) and induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) exhibit beat rate variability and power-law behavior comparable to those of human sinoatrial node. METHODS AND RESULTS: We recorded extracellular electrograms from hESC-CMs and iPSC-CMs under stable conditions for up to 15 days. The beat rate time series of the spontaneous activity were examined in terms of their power spectral density and additional methods derived from nonlinear dynamics. The major findings were that the mean beat rate of hESC-CMs and iPSC-CMs was stable throughout the 15-day follow-up period and was similar in both cell types, that hESC-CMs and iPSC-CMs exhibited intrinsic beat rate variability and fractal behavior, and that isoproterenol increased and carbamylcholine decreased the beating rate in both hESC-CMs and iPSC-CMs. CONCLUSIONS: This is the first study demonstrating that hESC-CMs and iPSC-CMs exhibit beat rate variability and power-law behavior as in humans, thus supporting the potential capability of these cell sources to serve as biological pacemakers. Our ability to generate sinoatrial-compatible spontaneous cardiomyocytes from the patient's own hair (via keratinocyte-derived iPSCs), thus eliminating the critical need for immunosuppression, renders these myocytes an attractive cell source as biological pacemakers.


Assuntos
Células-Tronco Embrionárias/citologia , Frequência Cardíaca , Células-Tronco Pluripotentes Induzidas/citologia , Miócitos Cardíacos/fisiologia , Carbacol/farmacologia , Frequência Cardíaca/efeitos dos fármacos , Humanos , Isoproterenol/farmacologia , Nó Sinoatrial/fisiologia
7.
J Cell Mol Med ; 16(3): 468-82, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22050625

RESUMO

Sudden cardiac death caused by ventricular arrhythmias is a disastrous event, especially when it occurs in young individuals. Among the five major arrhythmogenic disorders occurring in the absence of a structural heart disease is catecholaminergic polymorphic ventricular tachycardia (CPVT), which is a highly lethal form of inherited arrhythmias. Our study focuses on the autosomal recessive form of the disease caused by the missense mutation D307H in the cardiac calsequestrin gene, CASQ2. Because CASQ2 is a key player in excitation contraction coupling, the derangements in intracellular Ca(2+) handling may cause delayed afterdepolarizations (DADs), which constitute the mechanism underlying CPVT. To investigate catecholamine-induced arrhythmias in the CASQ2 mutated cells, we generated for the first time CPVT-derived induced pluripotent stem cells (iPSCs) by reprogramming fibroblasts from skin biopsies of two patients, and demonstrated that the iPSCs carry the CASQ2 mutation. Next, iPSCs were differentiated to cardiomyocytes (iPSCs-CMs), which expressed the mutant CASQ2 protein. The major findings were that the ß-adrenergic agonist isoproterenol caused in CPVT iPSCs-CMs (but not in the control cardiomyocytes) DADs, oscillatory arrhythmic prepotentials, after-contractions and diastolic [Ca(2+) ](i) rise. Electron microscopy analysis revealed that compared with control iPSCs-CMs, CPVT iPSCs-CMs displayed a more immature phenotype with less organized myofibrils, enlarged sarcoplasmic reticulum cisternae and reduced number of caveolae. In summary, our results demonstrate that the patient-specific mutated cardiomyocytes can be used to study the electrophysiological mechanisms underlying CPVT.


Assuntos
Agonistas Adrenérgicos beta/farmacologia , Calsequestrina/genética , Isoproterenol/farmacologia , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Taquicardia Ventricular/patologia , Adulto , Cálcio/metabolismo , Sinalização do Cálcio , Calsequestrina/metabolismo , Diferenciação Celular , Criança , Acoplamento Excitação-Contração , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Genes Recessivos , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Masculino , Potenciais da Membrana , Mutação de Sentido Incorreto , Miocárdio/patologia , Miócitos Cardíacos/patologia , Taquicardia Ventricular/genética , Taquicardia Ventricular/metabolismo
8.
J Cell Mol Med ; 15(11): 2539-51, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21883888

RESUMO

Induced pluripotent stem cells (iPSC) are generated from fully differentiated somatic cells that were reprogrammed into a pluripotent state. Human iPSC which can be obtained from various types of somatic cells such as fibroblasts or keratinocytes can differentiate into cardiomyocytes (iPSC-CM), which exhibit cardiac-like transmembrane action potentials, intracellular Ca(2+) transients and contractions. While major features of the excitation-contraction coupling of iPSC-CM have been well-described, very little is known on the ultrastructure of these cardiomyocytes. The ultrastructural features of 31-day-old (post-plating) iPSC-CM generated from human hair follicle keratinocytes (HFKT-iPSC-CM) were analysed by electron microscopy, and compared with those of human embryonic stem-cell-derived cardiomyocytes (hESC-CM). The comparison showed that cardiomyocytes from the two sources share similar proprieties. Specifically, HFKT-iPSC-CM and hESC-CM, displayed ultrastructural features of early and immature phenotype: myofibrils with sarcomeric pattern, large glycogen deposits, lipid droplets, long and slender mitochondria, free ribosomes, rough endoplasmic reticulum, sarcoplasmic reticulum and caveolae. Noteworthy, the SR is less developed in HFKT-iPSC-CM. We also found in both cell types: (1) 'Ca(2+)-release units', which connect the peripheral sarcoplasmic reticulum with plasmalemma; and (2) intercellular junctions, which mimic intercalated disks (desmosomes and fascia adherens). In conclusion, iPSC and hESC differentiate into cardiomyocytes of comparable ultrastructure, thus supporting the notion that iPSC offer a viable option for an autologous cell source for cardiac regenerative therapy.


Assuntos
Diferenciação Celular , Células-Tronco Embrionárias/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Miócitos Cardíacos/ultraestrutura , Cálcio/metabolismo , Cavéolas/ultraestrutura , Células Cultivadas , Células-Tronco Embrionárias/fisiologia , Retículo Endoplasmático/ultraestrutura , Acoplamento Excitação-Contração , Fibroblastos/citologia , Folículo Piloso/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Queratinócitos/citologia , Potenciais da Membrana , Microscopia Eletrônica , Mitocôndrias Cardíacas/ultraestrutura , Contração Miocárdica , Retículo Sarcoplasmático/ultraestrutura
9.
Cell Reprogram ; 12(6): 665-78, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20964482

RESUMO

Induced pluripotent stem cells (iPSCs) represent an ideal cell source for future cell therapy and regenerative medicine. However, most iPSC lines described to date have been isolated from skin fibroblasts or other cell types that require harvesting by surgical intervention. Because it is desirable to avoid such intervention, an alternative cell source that can be readily and noninvasively isolated from patients and efficiently reprogrammed, is required. Here we describe a detailed and reproducible method to derive iPSCs from plucked human hair follicle keratinocytes (HFKTs). HFKTs were isolated from single plucked hair, then expanded and reprogrammed by a single polycistronic excisable lentiviral vector. The reprogrammed HFKTs were found to be very sensitive to human embryonic stem cell (hESC) growth conditions, generating a built-in selection with easily obtainable and very stable iPSCs. All emerging colonies were true iPSCs, with characteristics typical of human embryonic stem cells, differentiated into derivatives of all three germ layers in vitro and in vivo. Spontenaeouly differentiating functional cardiomyocytes (CMs) were successfully derived and characterized from these HFKT-iPSCs. The contracting CMs exhibited well-coordinated intracellular Ca²+ transients and contractions that were readily responsive to ß-adrenergic stimulation with isoproterenol. The introduction of Cre-recombinase to HFKT-iPSC clones was able to successfully excise the integrated vector and generate transgene-free HFKT-iPSC clone that could be better differentiated into contracting CMs, thereby revealing the desired cells for modeling human diseases. Thus, HFKTs are easily obtainable, and highly reprogrammed human cell source for all iPSC applications.


Assuntos
Diferenciação Celular/fisiologia , Folículo Piloso/química , Coração/embriologia , Queratinócitos/fisiologia , Lentivirus/metabolismo , Miocárdio/citologia , Técnicas de Cultura de Células/métodos , Células Cultivadas , Humanos , Queratinócitos/citologia , Lentivirus/genética , Técnicas de Patch-Clamp , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA