RESUMO
KAT6A and KAT6B genes are two closely related lysine acetyltransferases that transfer an acetyl group from acetyl coenzyme A (AcCoA) to lysine residues of target histone substrates, hence playing a key role in chromatin regulation. KAT6A and KAT6B genes are frequently amplified in various cancer types. In breast cancer, the 8p11-p12 amplicon occurs in 12-15% of cases, resulting in elevated copy numbers and expression levels of chromatin modifiers like KAT6A. Here, we report the discovery of a new acylsulfonamide-benzofuran series as a novel structural class for KAT6A/B inhibition. These compounds were identified through high-throughput screening and subsequently optimized using molecular modeling and cocrystal structure determination. The final tool compound, BAY-184 (29), was successfully validated in an in vivo proof-of-concept study.
RESUMO
Inhibition of intracellular nicotinamide phosphoribosyltransferase (NAMPT) represents a new mode of action for cancer-targeting antibody-drug conjugates (ADCs) with activity also in slowly proliferating cells. To extend the repertoire of available effector chemistries, we have developed a novel structural class of NAMPT inhibitors as ADC payloads. A structure-activity relationship-driven approach supported by protein structural information was pursued to identify a suitable attachment point for the linker to connect the NAMPT inhibitor with the antibody. Optimization of scaffolds and linker structures led to highly potent effector chemistries which were conjugated to antibodies targeting C4.4a (LYPD3), HER2 (c-erbB2), or B7H3 (CD276) and tested on antigen-positive and -negative cancer cell lines. Pharmacokinetic studies, including metabolite profiling, were performed to optimize the stability and selectivity of the ADCs and to evaluate potential bystander effects. Optimized NAMPTi-ADCs demonstrated potent in vivo antitumor efficacy in target antigen-expressing xenograft mouse models. This led to the development of highly potent NAMPT inhibitor ADCs with a very good selectivity profile compared with the corresponding isotype control ADCs. Moreover, we demonstrateâto our knowledge for the first timeâthe generation of NAMPTi payload metabolites from the NAMPTi-ADCs in vitro and in vivo. In conclusion, NAMPTi-ADCs represent an attractive new payload class designed for use in ADCs for the treatment of solid and hematological cancers.
Assuntos
Antineoplásicos , Imunoconjugados , Neoplasias , Nicotinamida Fosforribosiltransferase , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antígenos B7 , Linhagem Celular Tumoral , Humanos , Imunoconjugados/química , Imunoconjugados/farmacologia , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Nicotinamida Fosforribosiltransferase/antagonistas & inibidores , Nicotinamida Fosforribosiltransferase/química , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Structural mutants of p53 induce global p53 protein destabilization and misfolding, followed by p53 protein aggregation. First evidence indicates that p53 can be part of protein condensates and that p53 aggregation potentially transitions through a condensate-like state. We show condensate-like states of fluorescently labeled structural mutant p53 in the nucleus of living cancer cells. We furthermore identified small molecule compounds that interact with the p53 protein and lead to dissolution of p53 structural mutant condensates. The same compounds lead to condensation of a fluorescently tagged p53 DNA-binding mutant, indicating that the identified compounds differentially alter p53 condensation behavior depending on the type of p53 mutation. In contrast to p53 aggregation inhibitors, these compounds are active on p53 condensates and do not lead to mutant p53 reactivation. Taken together our study provides evidence for structural mutant p53 condensation in living cells and tools to modulate this process.
RESUMO
The unbound partition coefficient (Kpuu) allows the estimation of intracellular target exposure from free extracellular drug concentrations. Although the active mechanisms controlling Kpuu are saturable, Kpuu is commonly determined at a single concentration, which may not be appropriate in cases in which drug concentrations can largely vary, e.g., in plasma in vivo or in vitro IC50 assays. We examined the concentration dependence of Kpuu in vitro using KAT6A inhibitors with varying potency drop-off in ZR75-1 breast cancer cells to account for exposure-related discrepancies between cellular and biochemical IC50 Considering saturability resulted in a better quantitative bridge between both IC50 values and gave way to a simplified method to determine Kpuu that is suitable for the prediction of unbound cytosolic drug concentrations without the need to generate fu,cell estimates from binding studies in cell homogenates. As opposed to the binding method, which destroys cellular integrity, this approach provides an alternative fu,cell estimate and directly reflects the fraction of unbound drug in the cell cytosol based on Kp saturation (fu,cyto) of intact cells. In contrast to the binding method, prediction of intracellular KAT6A exposure with this more physiologic approach was able to bridge the average exposure gap between biochemical and cellular IC50 values from 73-fold down to only 5.4-fold. The concept of concentration-dependent Kpuu provides a solid rationale for early drug discovery to discriminate between pharmacology and target exposure-related IC50 discrepancies. The attractiveness of the approach also lies in the use of the same assay format for cellular IC50, fu,cyto, and the unbound partition coefficient based on fu,cyto (Kpuu,cyto) determination. SIGNIFICANCE STATEMENT: Examination of the yet-unexplored concentration dependence of the unbound partition coefficient led to a new experimental approach that resulted in more reliable predictions of intracellular target exposure and is well suited for routine drug discovery projects.
Assuntos
Inibidores Enzimáticos/farmacocinética , Histona Acetiltransferases/antagonistas & inibidores , Modelos Biológicos , Linhagem Celular Tumoral , Citosol/metabolismo , Histona Acetiltransferases/metabolismo , Humanos , Concentração Inibidora 50RESUMO
Protein lysine methyltransferases have recently emerged as a new target class for the development of inhibitors that modulate gene transcription or signaling pathways. SET and MYND domain containing protein 2 (SMYD2) is a catalytic SET domain containing methyltransferase reported to monomethylate lysine residues on histone and nonhistone proteins. Although several studies have uncovered an important role of SMYD2 in promoting cancer by protein methylation, the biology of SMYD2 is far from being fully understood. Utilization of highly potent and selective chemical probes for target validation has emerged as a concept which circumvents possible limitations of knockdown experiments and, in particular, could result in an improved exploration of drug targets with a complex underlying biology. Here, we report the development of a potent, selective, and cell-active, substrate-competitive inhibitor of SMYD2, which is the first reported inhibitor suitable for in vivo target validation studies in rodents.
Assuntos
Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Piridazinas/farmacologia , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Células HEK293 , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Modelos Moleculares , Estrutura Molecular , Piridazinas/síntese química , Piridazinas/química , Relação Estrutura-Atividade , Proteína Supressora de Tumor p53/antagonistas & inibidores , Proteína Supressora de Tumor p53/metabolismoRESUMO
Endosomes and endosomal vesicles (EVs) rapidly move along cytoskeletal filaments allowing them to exchange proteins and lipids between different endosomal compartments, lysosomes, the trans-Golgi network (TGN), and the plasma membrane. The precise mechanisms that connect membrane traffic between the TGN and perinuclear endosomal compartments with motor-protein driven transport have largely remained elusive. Here we show that Gadkin (also termed gamma-BAR), a peripheral membrane protein localized to the TGN and to TGN-derived EVs, directly associates with the clathrin adaptor AP-1 and with the motor protein kinesin KIF5, thereby potentially regulating EV dynamics. Gadkin overexpression induced the dispersion of transferrin (Tf)- and Rab4-positive EVs to the cell periphery, whereas KIF5B-depleted cells displayed a perinuclear concentration. Functional experiments suggest that the role of Gadkin as a regulator of endosomal membrane traffic critically depends on complex formation with both AP-1 and KIF5. Our data thus provide a direct molecular link between TGN-derived EVs and the microtubule-based cytoskeleton.
Assuntos
Endossomos/metabolismo , Cinesinas/metabolismo , Proteínas de Membrana/metabolismo , Complexos Multiproteicos/metabolismo , Fator de Transcrição AP-1/metabolismo , Animais , Transporte Biológico Ativo/fisiologia , Células COS , Chlorocebus aethiops , Cromatografia de Afinidade , Células HeLa , Humanos , Imunoprecipitação , Microscopia de FluorescênciaRESUMO
The protein disulfide isomerase-related protein ERp29 is a putative chaperone involved in processing and secretion of secretory proteins. Until now, however, both the structure and the exact nature of interacting substrates remained unclear. We provide for the first time a crystal structure of human ERp29, refined to 2.9 A, and show that the protein has considerable structural homology to its Drosophila homolog Wind. We show that ERp29 binds directly not only to thyroglobulin and thyroglobulin-derived peptides in vitro but also to the Wind client protein Pipe and Pipe-derived peptides, although it fails to process Pipe in vivo. A monomeric mutant of ERp29 and a D domain mutant in which the second peptide binding site is inactivated also bind protein substrates, indicating that the monomeric thioredoxin domain is sufficient for client protein binding. Indeed, the b domains of ERp29 or Wind, expressed alone, are sufficient for binding proteins and peptides. Interacting peptides have in common two or more aromatic residues, with stronger binding for sequences with overall basic character. Thus, the data allow a view of the two putative peptide binding sites of ERp29 and indicate that the apparent, different processing activity of the human and Drosophila proteins in vivo does not stem from differences in peptide binding properties.
Assuntos
Proteínas de Choque Térmico/química , Modelos Moleculares , Sequência de Aminoácidos , Animais , Sítios de Ligação , Cristalografia por Raios X , Dimerização , Proteínas de Drosophila/química , Proteínas de Choque Térmico/genética , Humanos , Dados de Sequência Molecular , Mutação , Peptídeos/química , Ligação Proteica , Estrutura Terciária de Proteína , Especificidade por Substrato , Tiorredoxinas/química , Tireoglobulina/químicaRESUMO
The structure and mode of binding of the endoplasmic reticulum protein disulfide isomerase-related proteins to their substrates is currently a focus of intensive research. We have recently determined the crystal structure of the Drosophila melanogaster protein disulfide isomerase-related protein Wind and have described two essential substrate binding sites within the protein, one within the thioredoxin b-domain and another within the C-terminal D-domain. Although a mammalian ortholog of Wind (ERp29/28) is known, conflicting interpretations of its structure and putative function have been postulated. Here, we have provided evidence indicating that ERp29 is indeed similar in both structure and function to its Drosophila ortholog. Using a site-directed mutagenesis approach, we have demonstrated that homodimerization of the b-domains is significantly reduced in vitro upon replacement of key residues at the predicted dimerization interface. Investigation of Wind-ERp29 fusion constructs showed that mutants of the D-domain of ERp29 prevent transport of a substrate protein (Pipe) in a manner consistent with the presence of a discrete, conserved peptide binding site in the D-domain. Finally, we have highlighted the general applicability of these findings by showing that the D-domain of a redox-active disulfide isomerase, from the slime mold Dictyostelium discoideum, can also functionally replace the Wind D-domain in vivo.