Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Cell ; 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37824826

RESUMO

Model species continue to underpin groundbreaking plant science research. At the same time, the phylogenetic resolution of the land plant Tree of Life continues to improve. The intersection of these two research paths creates a unique opportunity to further extend the usefulness of model species across larger taxonomic groups. Here we promote the utility of the Arabidopsis thaliana model species, especially the ability to connect its genetic and functional resources, to species across the entire Brassicales order. We focus on the utility of using genomics and phylogenomics to bridge the evolution and diversification of several traits across the Brassicales to the resources in Arabidopsis, thereby extending scope from a model species by establishing a "model clade". These Brassicales-wide traits are discussed in the context of both the model species Arabidopsis thaliana and the family Brassicaceae. We promote the utility of such a "model clade" and make suggestions for building global networks to support future studies in the model order Brassicales.

2.
Plant J ; 116(3): 921-941, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37609706

RESUMO

Schrenkiella parvula, a leading extremophyte model in Brassicaceae, can grow and complete its lifecycle under multiple environmental stresses, including high salinity. Yet, the key physiological and structural traits underlying its stress-adapted lifestyle are unknown along with trade-offs when surviving salt stress at the expense of growth and reproduction. We aimed to identify the influential adaptive trait responses that lead to stress-resilient and uncompromised growth across developmental stages when treated with salt at levels known to inhibit growth in Arabidopsis and most crops. Its resilient growth was promoted by traits that synergistically allowed primary root growth in seedlings, the expansion of xylem vessels across the root-shoot continuum, and a high capacity to maintain tissue water levels by developing thicker succulent leaves while enabling photosynthesis during salt stress. A successful transition from vegetative to reproductive phase was initiated by salt-induced early flowering, resulting in viable seeds. Self-fertilization in salt-induced early flowering was dependent upon filament elongation in flowers otherwise aborted in the absence of salt during comparable plant ages. The maintenance of leaf water status promoting growth, and early flowering to ensure reproductive success in a changing environment, were among the most influential traits that contributed to the extremophytic lifestyle of S. parvula.


Assuntos
Arabidopsis , Brassicaceae , Brassicaceae/fisiologia , Arabidopsis/fisiologia , Flores , Estresse Salino , Estresse Fisiológico , Água
3.
New Phytol ; 236(3): 1006-1026, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35909295

RESUMO

Plant adaptation to a desert environment and its endemic heat stress is poorly understood at the molecular level. The naturally heat-tolerant Brassicaceae species Anastatica hierochuntica is an ideal extremophyte model to identify genetic adaptations that have evolved to allow plants to tolerate heat stress and thrive in deserts. We generated an A. hierochuntica reference transcriptome and identified extremophyte adaptations by comparing Arabidopsis thaliana and A. hierochuntica transcriptome responses to heat, and detecting positively selected genes in A. hierochuntica. The two species exhibit similar transcriptome adjustment in response to heat and the A. hierochuntica transcriptome does not exist in a constitutive heat 'stress-ready' state. Furthermore, the A. hierochuntica global transcriptome as well as heat-responsive orthologs, display a lower basal and higher heat-induced expression than in A. thaliana. Genes positively selected in multiple extremophytes are associated with stomatal opening, nutrient acquisition, and UV-B induced DNA repair while those unique to A. hierochuntica are consistent with its photoperiod-insensitive, early-flowering phenotype. We suggest that evolution of a flexible transcriptome confers the ability to quickly react to extreme diurnal temperature fluctuations characteristic of a desert environment while positive selection of genes involved in stress tolerance and early flowering could facilitate an opportunistic desert lifestyle.


Assuntos
Arabidopsis , Brassicaceae , Aclimatação , Adaptação Fisiológica/genética , Arabidopsis/genética , Brassicaceae/genética , Regulação da Expressão Gênica de Plantas , Transcriptoma/genética
4.
Hortic Res ; 9: uhac061, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35531316

RESUMO

Grafting has been demonstrated to significantly enhance the salt tolerance of crops. However, breeding efforts to develop enhanced graft combinations are hindered by knowledge-gaps as to how rootstocks mediate scion-response to salt stress. We grafted the scion of cultivated M82 onto rootstocks of 254 tomato accessions and explored the morphological and metabolic responses of grafts under saline conditions (EC = 20 dS m-1) as compared to self-grafted M82 (SG-M82). Correlation analysis and Least Absolute Shrinkage and Selection Operator were performed to address the association between morphological diversification and metabolic perturbation. We demonstrate that grafting the same variety onto different rootstocks resulted in scion phenotypic heterogeneity and emphasized the productivity efficiency of M82 irrespective of the rootstock. Spectrophotometric analysis to test lipid oxidation showed largest variability of malondialdehyde (MDA) equivalents across the population, while the least responsive trait was the ratio of fruit fresh weight to total fresh weight (FFW/TFW). Generally, grafts showed greater values for the traits measured than SG-M82, except for branch number and wild race-originated rootstocks; the latter were associated with smaller scion growth parameters. Highly responsive and correlated metabolites were identified across the graft collection including malate, citrate, and aspartate, and their variance was partly related to rootstock origin. A group of six metabolites that consistently characterized exceptional graft response was observed, consisting of sorbose, galactose, sucrose, fructose, myo-inositol, and proline. The correlation analysis and predictive modelling, integrating phenotype- and leaf metabolite data, suggest a potential predictive relation between a set of leaf metabolites and yield-related traits.

5.
Plant Physiol ; 178(3): 972-988, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30237204

RESUMO

Halophytes are able to thrive in salt concentrations that would kill 99% of other plant species, and identifying their salt-adaptive mechanisms has great potential for improving the tolerance of crop plants to salinized soils. Much research has focused on the physiological basis of halophyte salt tolerance, whereas the elucidation of molecular mechanisms has traditionally lagged behind due to the absence of a model halophyte system. However, over the last decade and a half, two Arabidopsis (Arabidopsis thaliana) relatives, Eutrema salsugineum and Schrenkiella parvula, have been established as transformation-competent models with various genetic resources including high-quality genome assemblies. These models have facilitated powerful comparative analyses with salt-sensitive Arabidopsis to unravel the genetic adaptations that enable a halophytic lifestyle. The aim of this review is to explore what has been learned about halophytism using E. salsugineum and S. parvula We consider evidence from physiological and molecular studies suggesting that differences in salt tolerance between related halophytes and salt-sensitive plants are associated with alterations in the regulation of basic physiological, biochemical, and molecular processes. Furthermore, we discuss how salt tolerance mechanisms of the halophytic models are reflected at the level of their genomes, where evolutionary processes such as subfunctionalization and/or neofunctionalization have altered the expression and/or functions of genes to facilitate adaptation to saline conditions. Lastly, we summarize the many areas of research still to be addressed with E. salsugineum and S. parvula as well as obstacles hindering further progress in understanding halophytism.


Assuntos
Adaptação Fisiológica , Brassicaceae/fisiologia , Plantas Tolerantes a Sal/fisiologia , Arabidopsis/genética , Arabidopsis/fisiologia , Brassicaceae/genética , Genômica , Modelos Biológicos , Tolerância ao Sal , Plantas Tolerantes a Sal/genética , Cloreto de Sódio/metabolismo
6.
Front Plant Sci ; 9: 950, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30022993

RESUMO

The tropical seagrass species, Halophila stipulacea, originated from the Indian Ocean and the Red Sea, subsequently invading the Mediterranean and has recently established itself in the Caribbean Sea. Due to its invasive nature, there is growing interest in understanding this species' capacity to adapt to new conditions. One approach to understanding the natural tolerance of a plant is to compare the tolerant species with a closely related non-tolerant species. We compared the physiological responses of H. stipulacea exposed to different salinities, with that of its nearest freshwater relative, Vallisneria americana. To achieve this goal, H. stipulacea and V. americana plants were grown in dedicated microcosms, and exposed to the following salt regimes: (i) H. stipulacea: control (40 PSU, practical salinity units), hyposalinity (25 PSU) and hypersalinity (60 PSU) for 3 weeks followed by a 4-week recovery phase (back to 40 PSU); (ii) V. americana: control (1 PSU), and hypersalinity (12 PSU) for 3 weeks, followed by a 4-week recovery phase (back to 1 PSU). In H. stipulacea, leaf number and chlorophyll content showed no significant differences between control plants and plants under hypo and hypersalinities, but a significant decrease in leaf area under hypersalinity was observed. In addition, compared with control plants, H. stipulacea plants exposed to hypo and hypersalinity were found to have reduced below-ground biomass and C/N ratios, suggesting changes in the allocation of resources in response to both stresses. There was no significant effect of hypo/hypersalinity on dark-adapted quantum yield of photosystem II (Fv/Fm) suggesting that H. stipulacea photochemistry is resilient to hypo/hypersalinity stress. In contrast to the seagrass, V. americana exposed to hypersalinity displayed significant decreases in above-ground biomass, shoot number, leaf number, blade length and Fv/Fm, followed by significant recoveries of all these parameters upon return of the plants to non-saline control conditions. These data suggest that H. stipulacea shows remarkable tolerance to both hypo and hypersalinity. Resilience to a relatively wide range of salinities may be one of the traits explaining the invasive nature of this species in the Mediterranean and Caribbean Seas.

7.
Int J Mol Sci ; 19(8)2018 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-30042356

RESUMO

Asteriscus graveolens (A. graveolens) plants contain among other metabolites, sesquiterpene lactone asteriscunolide isomers (AS). The crude extract and its fractions affected the viability of mouse BS-24-1 lymphoma cells (BS-24-1 cells) with an IC50 of 3 µg/mL. The fraction was cytotoxic to cancer cells but not to non-cancerous cells (human induced pluripotent stem cells); its activity was accompanied by a concentration- and time-dependent appearance of apoptosis as determined by DNA fragmentation and caspase-3 activity. High levels of Reactive Oxygen Species (ROS) were rapidly observed (less than 1 min) after addition of the fraction followed by an increase in caspase-3 activity three hours later. Comparison of RNA-seq transcriptome profiles from pre-and post-treatment of BS-24-1 cells with crude extract of A. graveolens yielded a list of 2293 genes whose expression was significantly affected. This gene set included genes encoding proteins involved in cell cycle arrest, protection against ROS, and activation of the tumor suppressor P53 pathway, supporting the biochemical findings on ROS species-dependent apoptosis induced by A. graveolens fraction. Interestingly, several of the pathways and genes affected by A. graveolens extract are expressed following treatment of human cancer cells with chemotherapy drugs. We suggest, that A. graveolens extracts maybe further developed into selective chemotherapy.


Assuntos
Antineoplásicos/farmacologia , Asteraceae/química , Fragmentação do DNA/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Camundongos , Extratos Vegetais/administração & dosagem , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Folhas de Planta/química , Espécies Reativas de Oxigênio/metabolismo , Sesquiterpenos/administração & dosagem , Sesquiterpenos/química , Sesquiterpenos/farmacologia , Transcriptoma
8.
Sci Rep ; 6: 39321, 2016 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-28004823

RESUMO

Dwindling water resources combined with meeting the demands for food security require maximizing water use efficiency (WUE) both in rainfed and irrigated agriculture. In this regard, deficit irrigation (DI), defined as the administration of water below full crop-water requirements (evapotranspiration), is a valuable practice to contain irrigation water use. In this study, the mechanism of paclobutrazol (Pbz)-mediated improvement in tolerance to water deficit in tomato was thoroughly investigated. Tomato plants were subjected to normal irrigated and deficit irrigated conditions plus Pbz application (0.8 and 1.6 ppm). A comprehensive morpho-physiological, metabolomics and molecular analysis was undertaken. Findings revealed that Pbz application reduced plant height, improved stem diameter and leaf number, altered root architecture, enhanced photosynthetic rates and WUE of tomato plants under deficit irrigation. Pbz differentially induced expression of genes and accumulation of metabolites of the tricarboxylic acid (TCA) cycle, γ-aminobutyric acid (GABA-shunt pathway), glutathione ascorbate (GSH-ASC)-cycle, cell wall and sugar metabolism, abscisic acid (ABA), spermidine (Spd) content and expression of an aquaporin (AP) protein under deficit irrigation. Our results suggest that Pbz application could significantly improve tolerance in tomato plants under limited water availability through selective changes in morpho-physiology and induction of stress-related molecular processes.


Assuntos
Pressão Osmótica , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/fisiologia , Estresse Fisiológico , Triazóis/metabolismo , Irrigação Agrícola , Animais , Solanum lycopersicum/anatomia & histologia
9.
Front Plant Sci ; 7: 1071, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27536302

RESUMO

The salinization of land is a major factor limiting crop production worldwide. Halophytes adapted to high levels of salinity are likely to possess useful genes for improving crop tolerance to salt stress. In addition, halophytes could provide a food source on marginal lands. However, despite halophytes being salt-tolerant plants, the seeds of several halophytic species will not germinate on saline soils. Yet, little is understood regarding biochemical and gene expression changes underlying salt-mediated inhibition of halophyte seed germination. We have used the halophytic Arabidopsis relative model system, Eutrema (Thellungiella) salsugineum to explore salt-mediated inhibition of germination. We show that E. salsugineum seed germination is inhibited by salt to a far greater extent than in Arabidopsis, and that this inhibition is in response to the osmotic component of salt exposure. E. salsugineum seeds remain viable even when germination is completely inhibited, and germination resumes once seeds are transferred to non-saline conditions. Moreover, removal of the seed coat from salt-treated seeds allows embryos to germinate on salt-containing medium. Mobilization of seed storage reserves is restricted in salt-treated seeds, while many germination-associated metabolic changes are arrested or progress to a lower extent. Salt-exposed seeds are further characterized by a reduced GA/ABA ratio and increased expression of the germination repressor genes, RGL2, ABI5, and DOG1. Furthermore, a salt-mediated increase in expression of a LATE EMBRYOGENESIS ABUNDANT gene and accretion of metabolites involved in osmoprotection indicates induction of processes associated with stress tolerance, and accumulation of easily mobilized carbon reserves. Overall, our results suggest that salt inhibits E. salsugineum seed germination by inducing a seed state with molecular features of dormancy while a physical constraint to radicle emergence is provided by the seed coat layers. This seed state could facilitate survival on saline soils until a rain event(s) increases soil water potential indicating favorable conditions for seed germination and establishment of salt-tolerant E. salsugineum seedlings.

10.
J Plant Physiol ; 192: 118-27, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26949231

RESUMO

In deciduous fruit trees, the effect of chilling on flowering has mostly been investigated in the "indirect flowering" group, characterized by a period of rest between flower bud formation and blooming. In the present study, we explored the effects of chilling and chilling deprivation on the flowering of Ziziphus jujuba, a temperate deciduous fruit tree belonging to the "direct flowering" group, in which flower bud differentiation, blooming and fruit development occur after dormancy release, during a single growing season. Dormancy release, vegetative growth and flowering time in Z. jujuba cv. Ben-Li were assessed following several treatments of chilling. Chilling treatments quantitatively decreased the timing of vegetative bud dormancy release, thereby accelerating flowering, but had no effect on the time from dormancy release to flowering. Trees grown at a constant temperature of 25°C, without chilling, broke dormancy and flowered, indicating the facultative character of chilling in this species. We measured the expression of Z. jujuba LFY and AP1 homologues (ZjLFY and ZjAP1). Chilling decreased ZjLFY expression in dormant vegetative buds but had no effect on ZjAP1expression, which reached peak expression before dormancy release and at anthesis. In conclusion, chilling is not obligatory for dormancy release of Z. jujuba cv. Ben-Li vegetative buds. However, the exposure to chilling during dormancy does accelerate vegetative bud dormancy release and flowering.


Assuntos
Flores/crescimento & desenvolvimento , Dormência de Plantas/fisiologia , Ziziphus/crescimento & desenvolvimento , Flores/fisiologia , Frutas/crescimento & desenvolvimento , Frutas/fisiologia , Reprodução , Estações do Ano , Árvores , Ziziphus/fisiologia
11.
Funct Plant Biol ; 43(7): v-x, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32480487

RESUMO

Plants that can survive and even thrive in extreme environments (extremophytes) are likely treasure boxes of plant adaptations to environmental stresses. These species represent excellent models for understanding mechanisms of stress tolerance that may not be present in stress-sensitive species, as well as for identifying genetic determinants to develop stress-tolerant crops. This special issue of Functional Plant Biology focuses on physiological and molecular processes that enable extremophytes to naturally survive high levels of salt or desiccation.

12.
Front Plant Sci ; 7: 1992, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28144244

RESUMO

The search for novel stress tolerance determinants has led to increasing interest in plants native to extreme environments - so called "extremophytes." One successful strategy has been comparative studies between Arabidopsis thaliana and extremophyte Brassicaceae relatives such as the halophyte Eutrema salsugineum located in areas including cold, salty coastal regions of China. Here, we investigate stress tolerance in the desert species, Anastatica hierochuntica (True Rose of Jericho), a member of the poorly investigated lineage III Brassicaceae. We show that A. hierochuntica has a genome approximately 4.5-fold larger than Arabidopsis, divided into 22 diploid chromosomes, and demonstrate that A. hierochuntica exhibits tolerance to heat, low N and salt stresses that are characteristic of its habitat. Taking salt tolerance as a case study, we show that A. hierochuntica shares common salt tolerance mechanisms with E. salsugineum such as tight control of shoot Na+ accumulation and resilient photochemistry features. Furthermore, metabolic profiling of E. salsugineum and A. hierochuntica shoots demonstrates that the extremophytes exhibit both species-specific and common metabolic strategies to cope with salt stress including constitutive up-regulation (under control and salt stress conditions) of ascorbate and dehydroascorbate, two metabolites involved in ROS scavenging. Accordingly, A. hierochuntica displays tolerance to methyl viologen-induced oxidative stress suggesting that a highly active antioxidant system is essential to cope with multiple abiotic stresses. We suggest that A. hierochuntica presents an excellent extremophyte Arabidopsis relative model system for understanding plant survival in harsh desert conditions.

13.
Biochim Biophys Acta ; 1849(4): 378-84, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25086338

RESUMO

Accumulating evidence lends support to the proposal that a major theme in plant responses to stresses is dedifferentiation, whereby mature cells acquire stem cell features (e.g. open chromatin conformation) prior to acquisition of a new cell fate. In this review, we discuss data addressing plant cell plasticity and provide evidence linking stress, dedifferentiation and a switch in cell fate. We emphasize the epigenetic modifications associated with stress-induced global changes in chromatin structure and conclude with the implications for genetic variation and for induced pluripotent stem cells in animals. It appears that stress is perceived as a signal that directs plant cells to undergo reprogramming (dedifferentiation) as a means for adaptation and in preparation for a stimulus-based acquisition of a new cell fate. This article is part of a Special Issue entitled: Stress as a fundamental theme in cell plasticity.


Assuntos
Desdiferenciação Celular , Células Vegetais/fisiologia , Estresse Fisiológico/fisiologia , Reprogramação Celular/fisiologia , Cromatina/química
14.
Plant Biotechnol J ; 13(4): 501-13, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25370817

RESUMO

As challenges to food security increase, the demand for lead genes for improving crop production is growing. However, genetic screens of plant mutants typically yield very low frequencies of desired phenotypes. Here, we present a powerful computational approach for selecting candidate genes for screening insertion mutants. We combined ranking of Arabidopsis thaliana regulatory genes according to their expression in response to multiple abiotic stresses (Multiple Stress [MST] score), with stress-responsive RNA co-expression network analysis to select candidate multiple stress regulatory (MSTR) genes. Screening of 62 T-DNA insertion mutants defective in candidate MSTR genes, for abiotic stress germination phenotypes yielded a remarkable hit rate of up to 62%; this gene discovery rate is 48-fold greater than that of other large-scale insertional mutant screens. Moreover, the MST score of these genes could be used to prioritize them for screening. To evaluate the contribution of the co-expression analysis, we screened 64 additional mutant lines of MST-scored genes that did not appear in the RNA co-expression network. The screening of these MST-scored genes yielded a gene discovery rate of 36%, which is much higher than that of classic mutant screens but not as high as when picking candidate genes from the co-expression network. The MSTR co-expression network that we created, AraSTressRegNet is publicly available at http://netbio.bgu.ac.il/arnet. This systems biology-based screening approach combining gene ranking and network analysis could be generally applicable to enhancing identification of genes regulating additional processes in plants and other organisms provided that suitable transcriptome data are available.


Assuntos
Arabidopsis/genética , Expressão Gênica , Redes Reguladoras de Genes , Genes de Plantas , Estresse Fisiológico/genética , Mutagênese Insercional , Análise de Sequência com Séries de Oligonucleotídeos
15.
Plant J ; 81(1): 121-33, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25359542

RESUMO

Correlation-based network analysis (CNA) of the metabolic profiles of seeds of a tomato introgression line mapping population revealed a clique of proteinogenic amino acids: Gly, Ile, Pro, Ser, Thr, and Val. Correlations between profiles of these amino acids exhibited a statistically significant average correlation coefficient of 0.84 as compared with an average correlation coefficient of 0.39 over the 16 119 other metabolite cliques containing six metabolites. In silico removal of cliques was used to quantify their importance in determining seminal network properties, highlighting the strong effects of the amino acid clique. Quantitative trait locus analysis revealed co-localization for the six amino acids on chromosome 2, 4 and 10. Sequence analysis identified a unique set of 10 genes on chromosome 2 only, which were associated with amino acid metabolism and specifically the metabolism of Ser-Gly and their conversion into branched-chain amino acids. Metabolite profiling of a set of sublines, with introgressions on chromosome 2, identified a significant change in the abundance of the six amino acids in comparison with M82. Expression analysis of candidate genes affecting Ser metabolism matched the observation from the metabolite data, suggesting a coordinated behavior of the level of these amino acids at the genetic level. Analysis of transcription factor binding sites in the promoter regions of the identified genes suggested combinatorial response to light and the circadian clock.


Assuntos
Aminoácidos de Cadeia Ramificada/metabolismo , Prolina/metabolismo , Serina/metabolismo , Solanum lycopersicum/metabolismo , Treonina/metabolismo , Cromossomos de Plantas , Relógios Circadianos , Simulação por Computador , DNA de Plantas/química , Regulação da Expressão Gênica de Plantas , Luz , Solanum lycopersicum/genética , Redes e Vias Metabólicas , Metabolômica , Prolina Oxidase/química , Prolina Oxidase/genética , Prolina Oxidase/metabolismo , Locos de Características Quantitativas , Sementes/genética , Sementes/metabolismo , Análise de Sequência de DNA
17.
Plant Signal Behav ; 9(12): e977729, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25517295

RESUMO

Plant responses to abiotic stresses are controlled by a complex tier of epigenetic, transcriptional and post-transcriptional regulation. We have provided evidence that the DEAD-box RNA helicases, STRESS RESPONSE SUPPRESSOR (STRS) 1 and STRS2 are negative regulators of Arabidopsis thaliana stress-responsive transcription factors. Using GFP-STRS fusion proteins, we have demonstrated that the STRSs are localized to the nucleolus and chromocenters, and are rapidly removed to the nucleoplasm upon application of various abiotic stresses. The STRSs appear to act via RNA-directed DNA methylation to suppress Arabidopsis stress responses; this repressive epigenetic mechanism is abrogated by abiotic stress eventually leading to an open chromatin structure allowing expression of stress-responsive genes.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , RNA Helicases DEAD-box/metabolismo , Epigênese Genética , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , RNA Helicases DEAD-box/genética , Modelos Biológicos
18.
Plant J ; 79(1): 28-43, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24724701

RESUMO

DEAD-box RNA helicases are involved in many aspects of RNA metabolism and in diverse biological processes in plants. Arabidopsis thaliana mutants of two DEAD-box RNA helicases, STRESS RESPONSE SUPPRESSOR1 (STRS1) and STRS2 were previously shown to exhibit tolerance to abiotic stresses and up-regulated stress-responsive gene expression. Here, we show that Arabidopsis STRS-overexpressing lines displayed a less tolerant phenotype and reduced expression of stress-induced genes confirming the STRSs as attenuators of Arabidopsis stress responses. GFP-STRS fusion proteins exhibited localization to the nucleolus, nucleoplasm and chromocenters and exhibited relocalization in response to abscisic acid (ABA) treatment and various stresses. This relocalization was reversed when stress treatments were removed. The STRS proteins displayed mis-localization in specific gene-silencing mutants and exhibited RNA-dependent ATPase and RNA-unwinding activities. In particular, STRS2 showed mis-localization in three out of four mutants of the RNA-directed DNA methylation (RdDM) pathway while STRS1 was mis-localized in the hd2c mutant that is defective in histone deacetylase activity. Furthermore, heterochromatic RdDM target loci displayed reduced DNA methylation and increased expression in the strs mutants. Taken together, our findings suggest that the STRS proteins are involved in epigenetic silencing of gene expression to bring about suppression of the Arabidopsis stress response.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , RNA Helicases DEAD-box/genética , Regulação da Expressão Gênica de Plantas , Ácido Abscísico/farmacologia , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Arabidopsis/citologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/fisiologia , Proteínas de Arabidopsis/metabolismo , Nucléolo Celular/metabolismo , Cromossomos de Plantas/genética , RNA Helicases DEAD-box/metabolismo , Metilação de DNA , Flores/citologia , Flores/efeitos dos fármacos , Flores/genética , Flores/fisiologia , Inativação Gênica , Germinação , Mutação , Fenótipo , Reguladores de Crescimento de Plantas/farmacologia , Folhas de Planta/citologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/fisiologia , Raízes de Plantas/citologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Plantas Geneticamente Modificadas , Transporte Proteico , Proteínas Recombinantes de Fusão , Plântula/citologia , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/fisiologia , Sementes/citologia , Sementes/efeitos dos fármacos , Sementes/genética , Sementes/fisiologia , Cloreto de Sódio/farmacologia , Estresse Fisiológico
19.
Physiol Plant ; 151(4): 544-58, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24372077

RESUMO

Non-photochemical quenching (NPQ) plays a major role in photoprotection. Anastatica hierochuntica is an annual desert plant found in hot deserts. We compared A. hierochuntica to three other different species: Arabidopsis thaliana, Eutrema salsugineum and Helianthus annuus, which have different NPQ and photosynthetic capacities. Anastatica hierochuntica plants had very different induction kinetics of NPQ and, to a lesser extent, of photosystem II electron transport rate (PSII ETR), in comparison to all other plants species in the experiments. The major components of the unusual photosynthetic and photoprotective response in A. hierochuntica were: (1) Low NPQ at the beginning of the light period, at various light intensities and CO2 concentrations. The described low NPQ cannot be explained by low leaf absorbance or by low energy distribution to PSII, but was related to the de-epoxidation state of xanthophylls. (2) Relatively high PSII ETR at various CO2 concentrations in correlation with low NPQ. PSII ETR responded positively to the increase of CO2 concentrations. At low CO2 concentrations PSII ETR was mostly O2 dependent. At moderate and high CO2 concentrations the high PSII ETR in A. hierochuntica was accompanied by relatively high CO2 assimilation rates. We suggest that A. hierochuntica have an uncommon NPQ and PSII ETR response. These responses in A. hierochuntica might represent an adaptation to the short growing season of an annual desert plant.


Assuntos
Clima Desértico , Processos Fotoquímicos , Rosaceae/fisiologia , Carbono/metabolismo , Dióxido de Carbono/farmacologia , Respiração Celular/efeitos dos fármacos , Respiração Celular/efeitos da radiação , Transporte de Elétrons/efeitos dos fármacos , Transporte de Elétrons/efeitos da radiação , Israel , Luz , Processos Fotoquímicos/efeitos dos fármacos , Processos Fotoquímicos/efeitos da radiação , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/fisiologia , Estômatos de Plantas/efeitos da radiação , Rosaceae/efeitos dos fármacos , Rosaceae/crescimento & desenvolvimento , Xantofilas/metabolismo
20.
Plant Physiol ; 162(3): 1583-98, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23735509

RESUMO

Comparative studies of the stress-tolerant Arabidopsis (Arabidopsis thaliana) halophytic relative, Eutrema salsugineum, have proven a fruitful approach to understanding natural stress tolerance. Here, we performed comparative phenotyping of Arabidopsis and E. salsugineum vegetative development under control and salt-stress conditions, and then compared the metabolic responses of the two species on different growth platforms in a defined leaf developmental stage. Our results reveal both growth platform-dependent and -independent phenotypes and metabolic responses. Leaf emergence was affected in a similar way in both species grown in vitro but the effects observed in Arabidopsis occurred at higher salt concentrations in E. salsugineum. No differences in leaf emergence were observed on soil. A new effect of a salt-mediated reduction in E. salsugineum leaf area was unmasked. On soil, leaf area reduction in E. salsugineum was mainly due to a fall in cell number, whereas both cell number and cell size contributed to the decrease in Arabidopsis leaf area. Common growth platform-independent leaf metabolic signatures such as high raffinose and malate, and low fumarate contents that could reflect core stress tolerance mechanisms, as well as growth platform-dependent metabolic responses were identified. In particular, the in vitro growth platform led to repression of accumulation of many metabolites including sugars, sugar phosphates, and amino acids in E. salsugineum compared with the soil system where these same metabolites accumulated to higher levels in E. salsugineum than in Arabidopsis. The observation that E. salsugineum maintains salt tolerance despite growth platform-specific phenotypes and metabolic responses suggests a considerable degree of phenotypic and metabolic adaptive plasticity in this extremophile.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Brassicaceae/crescimento & desenvolvimento , Brassicaceae/metabolismo , Plantas Tolerantes a Sal/fisiologia , Estresse Fisiológico , Adaptação Fisiológica , Arabidopsis/fisiologia , Brassicaceae/fisiologia , Tamanho Celular , Fumaratos/metabolismo , Malatos/metabolismo , Fenótipo , Folhas de Planta/citologia , Folhas de Planta/crescimento & desenvolvimento , Rafinose/metabolismo , Tolerância ao Sal , Solo , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA