Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Nanomedicine ; 18: 7257-7266, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38076733

RESUMO

Purpose: Oral administration, although convenient and preferred for treating colorectal cancer (CRC), faces challenges due to limited CRC-related intestinal positioning and a dense mucus barrier. In the present study, a gold-nanoparticle decorated-organometallic phyllosilicate nanocomposite (AC-Au), with a pH-dependent surface coating, was employed for more effective oral delivery of anticancer drugs to treat CRC. Methods: The organometallic AC-Au was synthesized using the in-situ sol-gel method. Subsequently, methotrexate (MTX) was loaded into AC-Au, and the complex (AC-Au/MTX) was surface-coated with poly (methacrylic acid-co-methyl methacrylate) (1:2), a pH-dependent polymer (E/AC-Au /MTX). The in vitro characteristics of nanoparticles were examined using various analytical methods. In vivo efficacy studies were also conducted using an HCT-116 orthotopic colorectal cancer model. Results: AC-Au emerged as a spherical nanoparticle with a mean size of 26.5 ± 0.43 nm, displaying a positive charge over the pH range of 2-10. Both the uncoated and coated drug-loaded nanocomplexes (AC-Au/MTX and E/AC-Au/MTX) were fabricated with high entrapment efficiency (> 80%). Various analyses, including ultraviolet-visible spectroscopy, X-ray powder diffraction, transmission electron microscopy, and energy dispersive X-ray spectroscopy, confirmed the formation of the nanocomplexes. While AC-Au/MTX achieved rapid and extensive drug release at the pH range of 1.2-7.4, E/AC-Au/MTX exhibited pH-dependent drug release, with approximately 23% at pH 1.2 and 74% at pH 7.4. Relative to free MTX, the AC-Au-based nanocomplex significantly enhanced the cytotoxicity of MTX in HCT-116 cells. Furthermore, orally administered E/AC-Au/MTX significantly improved the anti-tumor activity of MTX in an HCT-116 orthotopic colorectal cancer model, resulting in approximately 60% suppression of tumor mass compared with the positive control. Conclusion: The organometallic AC-Au nanocomplex coated with a pH-dependent polymer has the potential to be an effective colonic drug delivery system of MTX, enhancing in vivo efficacy against colorectal cancer.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Nanopartículas , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Ouro/química , Metotrexato/química , Polímeros , Silicatos
2.
Pharmaceutics ; 15(12)2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38140061

RESUMO

MT-102 is a new anti-inflammatory agent derived from Juglans mandshurica and Isatis indigotica. Its therapeutic potential is hindered by low aqueous solubility, impacting its in vivo efficacy. Therefore, this study aimed to develop a self-microemulsifying drug delivery system (SMEDDS) for MT-102 to enhance its oral efficacy in treating ulcerative colitis. Solubility assessment in different oils, surfactants, and cosurfactants led to a SMEDDS formulation of MT-102 using Capmul MCM, Tween 80, and propylene glycol. Based on a pseudoternary phase diagram, the optimal SMEDDS composition was selected, which consisted of 15% Capmul MCM, 42.5% Tween 80, and 42.5% propylene glycol. The resulting optimized SMEDDS (SMEDDS-F1) exhibited a narrow size distribution (177.5 ± 2.80 nm) and high indirubin content (275 ± 5.58 µg/g, a biomarker). Across an acidic to neutral pH range, SMEDDS-F1 showed rapid and extensive indirubin release, with dissolution rates approximately 15-fold higher than pure MT-102. Furthermore, oral administration of SMEDDS-F1 effectively mitigated inflammatory progression and symptoms in a mouse model of ulcerative colitis, whereas pure MT-102 was ineffective. SMEDDS-F1 minimized body weight loss (less than 5%) without any significant change in colon length and the morphology of colonic tissues, compared to those of the healthy control group. In addition, oral administration of SMEDDS-F1 significantly inhibited the secretion of pro-inflammatory cytokines such as IL-6 and TNF-α. In conclusion, the SMEDDS-F1 formulation employing Capmul MCM, Tween 80, and propylene glycol (15:42.5:42.5, w/w) enhances the solubility and therapeutic efficacy of MT-102.

3.
Drug Deliv ; 30(1): 2183816, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36880122

RESUMO

Pharmaceutical application of therapeutic proteins has been continuously expanded for the treatment of various diseases. Efficient and reliable bioanalytical methods are essential to expedite the identification and successful clinical development of therapeutic proteins. In particular, selective quantitative assays in a high-throughput format are critical for the pharmacokinetic and pharmacodynamic evaluation of protein drugs and to meet the regulatory requirements for new drug approval. However, the inherent complexity of proteins and many interfering substances presented in biological matrices have a great impact on the specificity, sensitivity, accuracy, and robustness of analytical assays, thereby hindering the quantification of proteins. To overcome these issues, various protein assays and sample preparation methods are currently available in a medium- or high-throughput format. While there is no standard or universal approach suitable for all circumstances, a liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay often becomes a method of choice for the identification and quantitative analysis of therapeutic proteins in complex biological samples, owing to its high sensitivity, specificity, and throughput. Accordingly, its application as an essential analytical tool is continuously expanded in pharmaceutical R&D processes. Proper sample preparation is also important since clean samples can minimize the interference from co-existing substances and improve the specificity and sensitivity of LC-MS/MS assays. A combination of different methods can be utilized to improve bioanalytical performance and ensure more accurate quantification. This review provides an overview of various protein assays and sample preparation methods, with particular emphasis on quantitative protein analysis by LC-MS/MS.


Assuntos
Espectrometria de Massas em Tandem , Cromatografia Líquida , Preparações Farmacêuticas
4.
Int J Nanomedicine ; 16: 7535-7556, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34795482

RESUMO

Probiotics have demonstrated their high potential to treat and/or prevent various diseases including neurodegenerative disorders, cancers, cardiovascular diseases, and inflammatory diseases. Probiotics are also effective against multidrug-resistant pathogens and help maintain a balanced gut microbiota ecosystem. Accordingly, the global market of probiotics is growing rapidly, and research efforts to develop probiotics into therapeutic adjuvants are gaining momentum. However, because probiotics are living microorganisms, many biological and biopharmaceutical barriers limit their clinical application. Probiotics may lose their activity in the harsh gastric conditions of the stomach or in the presence of bile salts. Moreover, they easily lose their viability under thermal or oxidative stress during their preparation and storage. Therefore, stable formulations of probiotics are required to overcome the various physicochemical, biopharmaceutical, and biological barriers and to maximize their therapeutic effectiveness and clinical applicability. This review provides an overview of the pharmaceutical applications of probiotics and covers recent formulation approaches to optimize the delivery of probiotics with particular emphasis on various dosage forms and formulation technologies.


Assuntos
Microbioma Gastrointestinal , Preparações Farmacêuticas , Probióticos , Ecossistema , Tecnologia
5.
Pharmaceutics ; 13(8)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34452103

RESUMO

AC1497 is an effective dual inhibitor of malate dehydrogenase 1 and 2 targeting cancer metabolism. However, its poor aqueous solubility results in low bioavailability, limiting its clinical development. This study was conducted to develop an effective self-nanoemulsifying drug delivery system (SNEDDS) of AC1497 to improve its oral absorption. Based on the solubility of AC1497 in various oils, surfactants, and cosurfactants, Capryol 90, Kolliphor RH40, and Transcutol HP were selected as the components of SNEDDS. After testing various weight ratios of Capryol 90 (20-30%), Kolliphor RH40 (35-70%), and Transcutol HP (10-35%), SNEDDS-F4 containing 20% Capryol 90, 45% Kolliphor RH40, and 35% Transcutol HP was identified as an optimal SNEDDS with a narrow size distribution (17.8 ± 0.36 nm) and high encapsulation efficiency (93.6 ± 2.28%). Drug release from SNEDDS-F4 was rapid, with approximately 80% of AC1497 release in 10 min while the dissolution of the drug powder was minimal (<2%). Furthermore, SNEDDS-F4 significantly improved the oral absorption of AC1497 in rats. The maximum plasma concentration and area under the plasma concentration-time curve of AC1497 were, respectively 6.82- and 3.14-fold higher for SNEDDS-F4 than for the drug powder. In conclusion, SNEDDS-F4 with Capryol 90, Kolliphor RH40, and Transcutol HP (20:45:35, w/w) effectively improves the solubility and oral absorption of AC1497.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA