Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Immunol ; 356: 104177, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32795666

RESUMO

Alpha1-antitrypsin (AAT) is a serum protease inhibitor that rises during inflammation and healthy pregnancies. Plasma-derived AAT, indicated for genetic AAT deficiency, is presently being explored for additional medical indications. Unlike corticosteroids, some anti-inflammatory activities of AAT involve NF-κB-dependent outcomes, e.g., induction of IL-1R antagonist. AAT activities were compared to dexamethasone (DEX), using various in-vitro cells assays, animal studies, and NF-κB-p65 localization and activity studies. Results demonstrate a cytokine shift towards resolution in AAT-treated cells, as opposed to pan-suppression in DEX-treated cells. AAT enhanced, while DEX suppressed LPS-induced IL-1Ra production and re-epithelialization. When drugs were combined, AAT allowed the immunosuppressive DEX activities, while DEX at medium to high levels antagonized beneficial AAT effects. Interestingly, lower levels of DEX maintained the immunosuppressive effect, while allowing upregulation of IL-1Ra. Therefore, AAT may represent a distinct endogenous anti-inflammatory, resolution-promoting agent that may improve tissue well-being while preventing undesired corticostroids side effects.


Assuntos
Corticosteroides/metabolismo , Inflamação/metabolismo , alfa 1-Antitripsina/metabolismo , Células A549 , Corticosteroides/fisiologia , Animais , Anti-Inflamatórios/farmacologia , Citocinas/metabolismo , Dexametasona/metabolismo , Dexametasona/farmacologia , Humanos , Proteína Antagonista do Receptor de Interleucina 1/metabolismo , Camundongos , NF-kappa B/metabolismo , Células RAW 264.7 , Transdução de Sinais/genética , Células THP-1 , Fator de Necrose Tumoral alfa/metabolismo , alfa 1-Antitripsina/genética , alfa 1-Antitripsina/farmacologia , alfa 1-Antitripsina/fisiologia
2.
Biochem J ; 477(2): 461-475, 2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-32003437

RESUMO

Mitochondrial turnover is required for proper cellular function. Both mitochondrial biogenesis and mitophagy are impaired in several degenerative and age-related diseases. The search for mitophagy activators recently emerged as a new therapeutical approach; however, there is a lack in suitable tools to follow mitochondrial turnover in a high-throughput manner. We demonstrate that the fluorescent protein, MitoTimer, is a reliable and robust probe to follow mitochondrial turnover. The screening of 15 000 small molecules led us to two chemically-related benzothiophenes that stimulate basal mitophagy in the beta-cell line, INS1. Enhancing basal mitophagy was associated with improved mitochondrial function, higher Complex I activity and Complex II and III expressions in INS1 cells, as well as better insulin secretion performance in mouse islets. The possibility of further enhancing mitophagy in the absence of mitochondrial stressors points to the existence of a 'basal mitophagy spare capacity'. To this end, we found two small molecules that can be used as models to better understand the physiological regulation of mitophagy.


Assuntos
Envelhecimento/genética , Secreção de Insulina/genética , Mitocôndrias/genética , Mitofagia/genética , Envelhecimento/patologia , Animais , Autofagia/genética , Linhagem Celular , Citometria de Fluxo , Humanos , Camundongos , Mitocôndrias/efeitos dos fármacos , Renovação Mitocondrial , Mitofagia/efeitos dos fármacos , Complexos Multienzimáticos/química , Complexos Multienzimáticos/genética , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Tiofenos/química , Tiofenos/farmacologia
3.
Front Immunol ; 9: 759, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29780379

RESUMO

Introduction: Human α1-antitrypsin (hAAT) is a 394-amino acid long anti-inflammatory, neutrophil elastase inhibitor, which binds elastase via a sequence-specific molecular protrusion (reactive center loop, RCL; positions 357-366). hAAT formulations that lack protease inhibition were shown to maintain their anti-inflammatory activities, suggesting that some attributes of the molecule may reside in extra-RCL segments. Here, we compare the protease-inhibitory and anti-inflammatory profiles of an extra-RCL mutation (cys232pro) and two intra-RCL mutations (pro357cys, pro357ala), to naïve [wild-type (WT)] recombinant hAAT, in vitro, and in vivo. Methods: His-tag recombinant point-mutated hAAT constructs were expressed in HEK-293F cells. Purified proteins were evaluated for elastase inhibition, and their anti-inflammatory activities were assessed using several cell-types: RAW264.7 cells, mouse bone marrow-derived macrophages, and primary peritoneal macrophages. The pharmacokinetics of the recombinant variants and their effect on LPS-induced peritonitis were determined in vivo. Results: Compared to WT and to RCL-mutated hAAT variants, cys232pro exhibited superior anti-inflammatory activities, as well as a longer circulating half-life, despite all three mutated forms of hAAT lacking anti-elastase activity. TNFα expression and its proteolytic membranal shedding were differently affected by the variants; specifically, cys232pro and pro357cys altered supernatant and serum TNFα dynamics without suppressing transcription or shedding. Conclusion: Our data suggest that the anti-inflammatory profile of hAAT extends beyond direct RCL regions. Such regions might be relevant for the elaboration of hAAT formulations, as well as hAAT-based drugs, with enhanced anti-inflammatory attributes.


Assuntos
alfa 1-Antitripsina/química , alfa 1-Antitripsina/genética , alfa 1-Antitripsina/imunologia , Animais , Sítios de Ligação , Células HEK293 , Humanos , Elastase de Leucócito/imunologia , Elastase de Leucócito/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Peritonite , Mutação Puntual , Conformação Proteica , Células RAW 264.7
4.
Chronic Obstr Pulm Dis ; 5(4): 267-276, 2018 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-30723784

RESUMO

Alpha-1 antitrypsin deficiency (AATD) is a genetic disorder which most commonly manifests as pulmonary emphysema. Accordingly, alpha-1 antitrypsin (AAT) augmentation therapy aims to reduce the progression of emphysema, as achieved by life-long weekly slow-drip infusions of plasma-derived affinity-purified human AAT. However, not all AATD patients will receive this therapy, due to either lack of medical coverage or low patient compliance. To circumvent these limitations, attempts are being made to develop lung-directed therapies, including inhaled AAT and locally-delivered AAT gene therapy. Lung transplantation is also an ultimate therapy option. Although less common, AATD patients also present with disease manifestations that extend beyond the lung, including vasculitis, diabetes and panniculitis, and appear to experience longer and more frequent hospitalization times and more frequent pneumonia bouts. In the past decade, new mechanism-based clinical indications for AAT therapy have surfaced, depicting a safe, anti-inflammatory, immunomodulatory and tissue-protective agent. Introduced to non-AATD individuals, AAT appears to provide relief from steroid-refractory graft-versus-host disease, from bacterial infections in cystic fibrosis and from autoimmune diabetes; preclinical studies show benefit also in multiple sclerosis, ulcerative colitis, rheumatoid arthritis, acute myocardial infarction and stroke, as well as ischemia-reperfusion injury and aberrant wound healing processes. While the current augmentation therapy is targeted towards treatment of emphysema, it is suggested that AATD patients may benefit from AAT augmentation therapy geared towards extrapulmonary pathologies as well. Thus, development of mechanism-based, context-specific AAT augmentation therapy protocols is encouraged. In the current review, we will discuss extrapulmonary manifestations of AATD and the potential of AAT augmentation therapy for these conditions.

5.
J Pharmacol Exp Ther ; 359(3): 482-490, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27821710

RESUMO

Life-long weekly infusions of human α1-antitrypsin (hAAT) are currently administered as augmentation therapy for patients with genetic AAT deficiency (AATD). Several recent clinical trials attempt to extend hAAT therapy to conditions outside AATD, including type 1 diabetes. Since the endpoint for AATD is primarily the reduction of risk for pulmonary emphysema, the present study explores hAAT dose protocols and routes of administration in attempt to optimize hAAT therapy for islet-related injury. Islet-grafted mice were treated with hAAT (Glassia™; i.p. or s.c.) under an array of clinically relevant dosing plans. Serum hAAT and immunocyte cell membrane association were examined, as well as parameters of islet survival. Results indicate that dividing the commonly prescribed 60 mg/kg i.p. dose to three 20 mg/kg injections is superior in affording islet graft survival; in addition, a short dynamic descending dose protocol (240→120→60→60 mg/kg i.p.) is comparable in outcomes to indefinite 60 mg/kg injections. While hAAT pharmacokinetics after i.p. administration in mice resembles exogenous hAAT treatment in humans, s.c. administration better imitated the physiological progressive rise of hAAT during acute phase responses; nonetheless, only the 60 mg/kg dose depicted an advantage using the s.c. route. Taken together, this study provides a platform for extrapolating an islet-relevant clinical protocol from animal models that use hAAT to protect islets. In addition, the study places emphasis on outcome-oriented analyses of drug efficacy, particularly important when considering that hAAT is presently at an era of drug-repurposing towards an extended list of clinical indications outside genetic AATD.

6.
Cell Transplant ; 25(8): 1575-88, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26850009

RESUMO

Immune tolerance toward "self" is critical in multiple immune disorders. While there are several mechanisms to describe the involvement of immune cells in the process, the role of peripheral tissue cells in that context is not yet clear. The theory of ecoimmunity postulates that interactions between immune and tissue cells represent a predator-prey relationship. A lifelong interaction, shaped mainly during early ontogeny, leads to selection of nonimmune cell phenotypes. Normally, therefore, nonimmune cells that evolve alongside an intact immune system would be phenotypically capable of evading immune responses, and cells whose phenotype falls short of satisfying this steady state would expire under hostile immune responses. This view was supported until recently by experimental evidence showing an inferior endurance of severe combined immunodeficiency (SCID)-derived pancreatic islets when engrafted into syngeneic immune-intact wild-type (WT) mice, relative to islets from WT. Here we extend the experimental exploration of ecoimmunity by searching for the presence of the phenotypic changes suggested by the theory. Immune-related phenotypes of islets, spleen, and bone marrow immune cells were determined, as well as SCID and WT nonlymphocytic cells. Islet submass grafting was performed to depict syngeneic graft functionality. Islet cultures were examined under both resting and inflamed conditions for expression of CD40 and major histocompatibility complex (MHC) class I/II and release of interleukin-1α (IL-1α), IL-1ß, IL-6, tumor necrosis factor-α (TNF-α), IL-10, and insulin. Results depict multiple pathways that appear to be related to the sculpting of nonimmune cells by immune cells; 59 SCID islet genes displayed relative expression changes compared with WT islets. SCID cells expressed lower tolerability to inflammation and higher levels of immune-related molecules, including MHC class I. Accordingly, islets exhibited a marked increase in insulin release upon immunocyte depletion, in effect resuming endocrine function that was otherwise suppressed by resident immunocytes. This work provides further support of the ecoimmunity theory and encourages subsequent studies to identify its role in the emergence and treatment of autoimmune pathologies, transplant rejection, and cancer.


Assuntos
Autoimunidade/fisiologia , Ilhotas Pancreáticas/metabolismo , Linfócitos/metabolismo , Animais , Autoimunidade/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Insulina/metabolismo , Interleucina-10/metabolismo , Interleucina-1alfa/metabolismo , Interleucina-6/metabolismo , Camundongos , Camundongos SCID , Fator de Necrose Tumoral alfa/metabolismo
7.
FEBS J ; 283(5): 822-33, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26732506

RESUMO

ß-cells quickly adjust insulin secretion to oscillations in nutrients carried by the blood, acting as fuel sensors. However, most studies of ß-cell responses to nutrients do not discriminate between fuel levels and signaling components present in the circulation. Here we studied the effect of serum from calorie-restricted rats versus serum from rats fed ad libitum, diluted tenfold in the medium, which did not contribute significantly to the pool of nutrients, on ß-cell mitochondrial function and dynamics under regular and high-nutrient culture conditions. Insulin secreting beta-cell derived line (INS1) cells incubated with serum from calorie-restricted rats (CR serum) showed higher levels of peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC-1α) and active nitric oxide synthase. The expression of mitofusin-2 (Mfn-2) and optic atrophy 1 (OPA-1), proteins involved in mitochondrial fusion, was increased, while the levels of the mitochondrial fission mediator dynamin related protein 1 (DRP-1) were reduced. Consistent with changes in mitochondrial dynamics protein levels, CR serum treatment increased mitochondrial fusion rates, as well as their length and connectivity. These changes in mitochondrial morphology were associated with prolonged glucose-stimulated insulin secretion and mitochondrial respiration. When combining CR serum and high levels of glucose and palmitate (20 and 0.4 mm, respectively), an in vitro model of type II diabetes, we observed that signaling promoted by CR serum was enough to overcome glucolipotoxicity, as indicated by CR-mediated prevention of mitochondrial fusion arrest and reduced respiratory function in INS1 cells under glucolipotoxicity. Overall, our results provide evidence that non-nutrient factors in serum have a major impact on ß-cell mitochondrial adaptations to changes in metabolism.


Assuntos
Restrição Calórica , Glucose/metabolismo , Células Secretoras de Insulina/metabolismo , Mitocôndrias/metabolismo , Animais , Linhagem Celular , Respiração Celular , Separação Celular , Dinaminas/metabolismo , Citometria de Fluxo , GTP Fosfo-Hidrolases/metabolismo , Insulina/metabolismo , Masculino , Dinâmica Mitocondrial , Óxido Nítrico Sintase Tipo III/metabolismo , Consumo de Oxigênio , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Ratos , Ratos Sprague-Dawley , Fatores de Transcrição/metabolismo
8.
Biomed Res Int ; 2015: 184574, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26583093

RESUMO

The traditional model of T helper differentiation describes the naïve T cell as choosing one of several subsets upon stimulation and an added reciprocal inhibition aimed at maintaining the chosen subset. However, to date, evidence is mounting to support the presence of subset plasticity. This is, presumably, aimed at fine-tuning adaptive immune responses according to local signals. Reprograming of cell phenotype is made possible by changes in activation of master transcription factors, employing epigenetic modifications that preserve a flexible mode, permitting a shift between activation and silencing of genes. The acute phase response represents an example of peripheral changes that are critical in modulating T cell responses. α1-antitrypsin (AAT) belongs to the acute phase responses and has recently surfaced as a tolerogenic agent in the context of adaptive immune responses. Nonetheless, AAT does not inhibit T cell responses, nor does it shutdown inflammation per se; rather, it appears that AAT targets non-T cell immunocytes towards changing the cytokine environment of T cells, thus promoting a regulatory T cell profile. The present review focuses on this intriguing two-way communication between innate and adaptive entities, a crosstalk that holds important implications on potential therapies for a multitude of immune disorders.


Assuntos
Proteínas de Fase Aguda/metabolismo , Imunidade Adaptativa , Imunidade Inata , alfa 1-Antitripsina/metabolismo , Proteínas de Fase Aguda/imunologia , Diferenciação Celular/imunologia , Humanos , Inflamação/imunologia , Inflamação/patologia , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Reguladores/imunologia , alfa 1-Antitripsina/imunologia
9.
J Infect Dis ; 211(9): 1489-98, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25389308

RESUMO

BACKGROUND: Severe bacterial infection can cause sepsis, multiple organ dysfunction syndrome (MODS), and death. Human α1-antitrypsin (hAAT) is an antiinflammatory, immune-modulating, and tissue-protective circulating serine-protease inhibitor, with levels that increase during acute-phase responses. It is currently being evaluated as a therapeutic agent for individuals with diabetes and graft-versus-host disease. However, the concern of opportunistic bacterial infections has yet to be addressed. Therefore, we investigated host immune cell responses during acute bacterial infections under conditions of elevated hAAT levels. METHODS: Peritonitis and sepsis models were created using wild-type mice and hAAT-transgenic mice. Bacterial loads, MODS, leukopenia, neutrophil infiltration, immune cell activation, circulating cytokine levels, and survival rates were then assessed. RESULTS: hAAT significantly reduced infection-induced leukopenia and liver, pancreas, and lung injury, and it significantly improved 24-hour survival rates. Unexpectedly, bacterial load was reduced. Levels of early proinflammatory mediators and neutrophil influx were increased by hAAT soon after infection but not during sterile peritonitis. CONCLUSIONS: hAAT reduces the bacterial burden after infection. Since hAAT does not block bacterial growth in culture, its effects might rely on host immune cell modulation. These outcomes suggest that prolonged hAAT treatment in patients without hAAT deficiency is safe. Additionally, hAAT treatment may be considered a preemptive therapeutic measure for individuals who are at risk for bacterial infections.


Assuntos
Peritonite/microbiologia , Sepse/microbiologia , alfa 1-Antitripsina/farmacologia , Animais , Carga Bacteriana , Citocinas/metabolismo , Humanos , Inflamação , Leucopenia , Camundongos , Camundongos Transgênicos , Neutrófilos
10.
Front Immunol ; 4: 320, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24191154

RESUMO

The extracellular form of the abundant heat-shock protein, gp96, is involved in human autoimmune pathologies. In patients with type 1 diabetes, circulating gp96 is found to be elevated, and is bound to the acute-phase protein, α1-antitrypsin (AAT). The two molecules also engage intracellularly during the physiological folding of AAT. AAT therapy promotes pancreatic islet survival in both transplantation and autoimmune diabetes models, and several clinical trials are currently examining AAT therapy for individuals with type 1 diabetes. However, its mechanism of action is yet unknown. Here, we examine whether the protective activity of AAT is related to binding of extracellular gp96. Primary mouse islets, macrophages, and dendritic cells were added recombinant gp96 in the presence of clinical-grade human AAT (hAAT, Glassia™, Kamada Ltd., Israel). Islet function was evaluated by insulin release. The effect of hAAT on IL-1ß/IFNγ-induced gp96 cell-surface levels was also evaluated. In vivo, skin transplantation was performed for examination of robust immune responses, and systemic inflammation was induced by cecal puncture. Endogenous gp96 was inhibited by gp96-inhibitory peptide (gp96i, Compugen Ltd., Israel) in an allogeneic islet transplantation model. Our findings indicate that hAAT binds to gp96 and diminishes gp96-induced inflammatory responses; e.g., hAAT-treated gp96-stimulated islets released less pro-inflammatory cytokines (IL-1ß by 6.16-fold and TNFα by 2.69-fold) and regained gp96-disrupted insulin release. hAAT reduced cell activation during both skin transplantation and systemic inflammation, as well as lowered inducible surface levels of gp96 on immune cells. Finally, inhibition of gp96 significantly improved immediate islet graft function. These results suggest that hAAT is a regulator of gp96-mediated inflammatory responses, an increasingly appreciated endogenous damage response with relevance to human pathologies that are exacerbated by tissue injury.

11.
PLoS One ; 8(5): e63625, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23717456

RESUMO

Clinical pancreatic islet transplantation is under evaluation for the treatment of autoimmune diabetes, yet several limitations preclude widespread use. For example, there is a critical shortage of human pancreas donors. Xenotransplantation may solve this problem, yet it evokes a rigorous immune response which can lead to graft rejection. Alpha-1-antitrypsin (AAT), a clinically available and safe circulating anti-inflammatory and tissue protective glycoprotein, facilitates islet alloimmune-tolerance and protects from inflammation in several models. Here, we examine whether human AAT (hAAT), alone or in combination with clinically relevant approaches, achieves long-term islet xenograft survival. Rat-to-mouse islet transplantation was examined in the following groups: untreated (n = 6), hAAT (n = 6, 60-240 mg/kg every 3 days from day -10), low-dose co-stimulation blockade (anti-CD154/LFA-1) and single-dose anti-CD4/CD8 (n = 5-7), either as mono- or combination therapies. Islet grafting was accompanied by blood glucose follow-up. In addition, skin xenografting was performed in order to depict responses that occur in draining lymph nodes. According to our results hAAT monotherapy and hAAT/anti-CD154/LFA-1 combined therapy, did not delay rejection day (11-24 days untreated vs. 10-22 day treated). However, host and donor intragraft inflammatory gene expression was diminished by hAAT therapy in both setups. Single dose T-cell depletion using anti-CD4/CD8 depleting antibodies, which provided 14-15 days of reduced circulating T-cells, significantly delayed rejection day (28-52 days) but did not achieve graft acceptance. In contrast, in combination with hAAT, the group displayed significantly extended rejection days and a high rate of graft acceptance (59, 61, >90, >90, >90). In examination of graft explants, marginal mononuclear-cell infiltration containing regulatory T-cells predominated surviving xenografts. We suggest that temporal T-cell depletion, as in the clinically practiced anti-thymocyte-globulin therapy, combined with hAAT, may promote islet xenograft acceptance. Further studies are required to elucidate the mechanism behind the observed synergy, as well as the applicability of the approach for pig-to-human islet xenotransplantation.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Sobrevivência de Enxerto/imunologia , Xenoenxertos/imunologia , Ilhotas Pancreáticas/imunologia , alfa 1-Antitripsina/imunologia , Animais , Anticorpos Monoclonais/imunologia , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/imunologia , Feminino , Expressão Gênica/genética , Expressão Gênica/imunologia , Rejeição de Enxerto/genética , Rejeição de Enxerto/imunologia , Sobrevivência de Enxerto/genética , Humanos , Transplante das Ilhotas Pancreáticas/imunologia , Linfonodos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley , Transplante Heterólogo/métodos , alfa 1-Antitripsina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA