Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Cancers (Basel) ; 12(12)2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33266275

RESUMO

Mutations in the isocitrate dehydrogenase (IDH1 or IDH2) genes are common in enchondromas and chondrosarcomas, and lead to elevated levels of the oncometabolite D-2-hydroxyglutarate causing widespread changes in the epigenetic landscape of these tumors. With the use of a DNA methylation array, we explored whether the methylome is altered upon progression from IDH mutant enchondroma towards high-grade chondrosarcoma. High-grade tumors show an overall increase in the number of highly methylated genes, indicating that remodeling of the methylome is associated with tumor progression. Therefore, an epigenetics compound screen was performed in five chondrosarcoma cell lines to therapeutically explore these underlying epigenetic vulnerabilities. Chondrosarcomas demonstrated high sensitivity to histone deacetylase (HDAC) inhibition in both 2D and 3D in vitro models, independent of the IDH mutation status or the chondrosarcoma subtype. siRNA knockdown and RNA expression data showed that chondrosarcomas rely on the expression of multiple HDACs, especially class I subtypes. Furthermore, class I HDAC inhibition sensitized chondrosarcoma to glutaminolysis and Bcl-2 family member inhibitors, suggesting that HDACs define the metabolic state and apoptotic threshold in chondrosarcoma. Taken together, HDAC inhibition may represent a promising targeted therapeutic strategy for chondrosarcoma patients, either as monotherapy or as part of combination treatment regimens.

2.
J Bone Oncol ; 19: 100268, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31832331

RESUMO

Chondrosarcomas are malignant cartilage tumors that are relatively resistant towards conventional therapeutic approaches. Kinase inhibitors have been investigated and shown successful for several different cancer types. In this study we aimed at identifying kinase inhibitors that inhibit the survival of chondrosarcoma cells and thereby serve as new potential therapeutic strategies to treat chondrosarcoma patients. An siRNA screen targeting 779 different kinases was conducted in JJ012 chondrosarcoma cells in parallel with a compound screen consisting of 273 kinase inhibitors in JJ012, SW1353 and CH2879 chondrosarcoma cell lines. AURKA, CHK1 and PLK1 were identified as most promising targets and validated further in a more comprehensive panel of chondrosarcoma cell lines. Dose response curves were performed using tyrosine kinase inhibitors: MK-5108 (AURKA), LY2603618 (CHK1) and Volasertib (PLK1) using viability assays and cell cycle analysis. Apoptosis was measured at 24 h after treatment using a caspase 3/7 assay. Finally, chondrosarcoma patient samples (N = =34) were used to examine the correlation between AURKA, CHK1 and PLK1 RNA expression and documented patient survival. Dose dependent decreases in viability were observed in chondrosarcoma cell lines after treatment with MK-5108, LY2603618 and volasertib, with cell lines showing highest sensitivity to PLK1 inhibition. In addition increased sensitivity to conventional chemotherapy was observed after CHK1 inhibition in a subset of the cell lines. Interestingly, whereas AURKA and CHK1 were both expressed in chondrosarcoma patient samples, PLK1 expression was found to be low compared to normal cartilage. Analysis of patient samples revealed that high CHK1 RNA expression correlated with a worse overall survival. AURKA, CHK1 and PLK1 are identified as important survival genes in chondrosarcoma cell lines. Although further research is needed to validate these findings, inhibiting CHK1 seems to be the most promising potential therapeutic target for patients with chondrosarcoma.

3.
Oncotarget ; 6(34): 36113-25, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26416351

RESUMO

High-grade conventional osteosarcoma is the most common primary bone tumor. Prognosis for osteosarcoma patients is poor and resistance to chemotherapy is common. We performed an siRNA screen targeting members of the Bcl-2 family in human osteosarcoma cell lines to identify critical regulators of osteosarcoma cell survival. Silencing the anti-apoptotic family member Bcl-xL but also the pro-apoptotic member Bak using a SMARTpool of siRNAs as well as 4/4 individual siRNAs caused loss of viability. Loss of Bak impaired cell cycle progression and triggered autophagy. Instead, silencing Bcl-xL induced apoptotic cell death. Bcl-xL was expressed in clinical osteosarcoma samples but mRNA or protein levels did not significantly correlate with therapy response or survival. Nevertheless, pharmacological inhibition of a range of Bcl-2 family members showed that inhibitors targeting Bcl-xL synergistically enhanced the response to the chemotherapeutic agent, doxorubicin. Indeed, in osteosarcoma cells strongly expressing Bcl-xL, the Bcl-xL-selective BH3 mimetic, WEHI-539 potently enhanced apoptosis in the presence of low doses of doxorubicin. Our results identify Bcl-xL as a candidate drug target for sensitization to chemotherapy in patients with osteosarcoma.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias Ósseas/tratamento farmacológico , Doxorrubicina/farmacologia , Inibidores Enzimáticos/farmacologia , Osteossarcoma/tratamento farmacológico , Proteína bcl-X/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Benzopiranos/farmacologia , Compostos de Bifenilo/farmacologia , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Estudos de Coortes , Doxorrubicina/administração & dosagem , Sinergismo Farmacológico , Inibidores Enzimáticos/administração & dosagem , Humanos , Imuno-Histoquímica , Neoplasias Pulmonares/secundário , Nitrilas/farmacologia , Nitrofenóis/farmacologia , Osteossarcoma/patologia , Piperazinas/farmacologia , Sulfonamidas/farmacologia , Análise Serial de Tecidos , Transfecção , Proteína bcl-X/biossíntese , Proteína bcl-X/genética
4.
J Pathol ; 236(3): 348-59, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25757065

RESUMO

Conventional high-grade osteosarcoma is the most common primary bone sarcoma, with relatively high incidence in young people. In this study we found that expression of Aven correlates inversely with metastasis-free survival in osteosarcoma patients and is increased in metastases compared to primary tumours. Aven is an adaptor protein that has been implicated in anti-apoptotic signalling and serves as an oncoprotein in acute lymphoblastic leukaemia. In osteosarcoma cells, silencing Aven triggered G2 cell-cycle arrest; Chk1 protein levels were attenuated and ATR-Chk1 DNA damage response signalling in response to chemotherapy was abolished in Aven-depleted osteosarcoma cells, while ATM, Chk2 and p53 activation remained intact. Osteosarcoma is notoriously difficult to treat with standard chemotherapy, and we examined whether pharmacological inhibition of the Aven-controlled ATR-Chk1 response could sensitize osteosarcoma cells to genotoxic compounds. Indeed, pharmacological inhibitors targeting Chk1/Chk2 or those selective for Chk1 synergized with standard chemotherapy in 2D cultures. Likewise, in 3D extracellular matrix-embedded cultures, Chk1 inhibition led to effective sensitization to chemotherapy. Together, these findings implicate Aven in ATR-Chk1 signalling and point towards Chk1 inhibition as a strategy to sensitize human osteosarcomas to chemotherapy.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Reguladoras de Apoptose/genética , Neoplasias Ósseas/genética , Regulação Neoplásica da Expressão Gênica , Proteínas de Membrana/genética , Osteossarcoma/genética , Proteínas Quinases/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Antibióticos Antineoplásicos/farmacologia , Apoptose , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Quinase 1 do Ponto de Checagem , Dano ao DNA , Doxorrubicina/farmacologia , Pontos de Checagem da Fase G2 do Ciclo Celular , Perfilação da Expressão Gênica , Humanos , Proteínas de Membrana/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Osteossarcoma/tratamento farmacológico , Osteossarcoma/patologia , Fosforilação , Proteínas Quinases/metabolismo , Interferência de RNA , Transdução de Sinais , Tiofenos/farmacologia , Ureia/análogos & derivados , Ureia/farmacologia
5.
Genes Cancer ; 6(11-12): 503-12, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26807203

RESUMO

Conventional high-grade osteosarcoma is the most common primary bone cancer with relatively high incidence in young people. Recurrent and metastatic tumors are difficult to treat. We performed a kinase inhibitor screen in two osteosarcoma cell lines, which identified MEK1/2 inhibitors. These inhibitors were further validated in a panel of six osteosarcoma cell lines. Western blot analysis was performed to assess ERK activity and efficacy of MEK inhibition. A 3D culture system was used to validate results from 2D monolayer cultures. Gene expression analysis was performed to identify differentially expressed gene signatures in sensitive and resistant cell lines. Activation of the AKT signaling network was explored using Western blot and pharmacological inhibition. In the screen, Trametinib, AZD8330 and TAK-733 decreased cell viability by more than 50%. Validation in six osteosarcoma cell lines identified three cell lines as resistant and three as sensitive to the inhibitors. Western blot analysis of ERK activity revealed that sensitive lines had high constitutive ERK activity. Treatment with the three MEK inhibitors in a 3D culture system validated efficacy in inhibition of osteosarcoma viability. MEK1/2 inhibition represents a candidate treatment strategy for osteosarcomas displaying high MEK activity as determined by ERK phosphorylation status.

6.
Cancer Res ; 75(1): 230-40, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25388286

RESUMO

Improved targeted therapies are needed to combat metastatic prostate cancer. Here, we report the identification of the spleen kinase SYK as a mediator of metastatic dissemination in zebrafish and mouse xenograft models of human prostate cancer. Although SYK has not been implicated previously in this disease, we found that its expression is upregulated in human prostate cancers and associated with malignant progression. RNAi-mediated silencing prevented invasive outgrowth in vitro and bone colonization in vivo, effects that were reversed by wild-type but not kinase-dead SYK expression. In the absence of SYK expression, cell surface levels of the progression-associated adhesion receptors integrin α2ß1 and CD44 were diminished. RNAi-mediated silencing of α2ß1 phenocopied SYK depletion in vitro and in vivo, suggesting an effector role for α2ß1 in this setting. Notably, pharmacologic inhibitors of SYK kinase currently in phase I-II trials for other indications interfered similarly with the invasive growth and dissemination of prostate cancer cells. Our findings offer a mechanistic rationale to reposition SYK kinase inhibitors for evaluation in patients with metastatic prostate cancer.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neoplasias da Próstata/enzimologia , Neoplasias da Próstata/terapia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/genética , Animais , Linhagem Celular Tumoral , Células HEK293 , Xenoenxertos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Terapia de Alvo Molecular , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Proteínas Tirosina Quinases/deficiência , Proteínas Tirosina Quinases/metabolismo , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Quinase Syk , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA