Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Vis Exp ; (176)2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34661573

RESUMO

Arabidopsis is by far the plant model species most widely used for functional studies. The surface sterilization of Arabidopsis seeds is a fundamental step required towards this end. Thus, it is paramount to establish high-throughput Arabidopsis seed surface sterilization methods to handle tens to hundreds of samples (e.g., transgenic lines, ecotypes, or mutants) at once. A seed surface sterilization method based on the efficient elimination of liquid in tubes with a homemade suction device constructed from a common vacuum pump is presented in this study. By dramatically reducing labor-intensive hands-on time with this method handling several hundreds of samples in one day is possible with little effort. Series time-course analyses further indicated a highly flexible time range of surface sterilization by maintaining high germination rates. This method could be easily adapted for surface sterilization of other kinds of small seeds with simple customization of the suction device according to the seed size, and the speed desired to eliminate the liquid.


Assuntos
Arabidopsis , Sementes , Esterilização , Germinação
2.
J Exp Bot ; 71(20): 6655-6669, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-32936292

RESUMO

Phytochelatin synthases (PCSs) play essential roles in detoxification of a broad range of heavy metals in plants and other organisms. Until now, however, no PCS gene from liverworts, the earliest branch of land plants and possibly the first one to acquire a PCS with a C-terminal domain, has been characterized. In this study, we isolated and functionally characterized the first PCS gene from a liverwort, Marchantia polymorpha (MpPCS). MpPCS is constitutively expressed in all organs examined, with stronger expression in thallus midrib. The gene expression is repressed by Cd2+ and Zn2+. The ability of MpPCS to increase heavy metal resistance in yeast and to complement cad1-3 (the null mutant of the Arabidopsis ortholog AtPCS1) proves its function as the only PCS from M. polymorpha. Site-directed mutagenesis of the most conserved cysteines of the C-terminus of the enzyme further uncovered that two twin-cysteine motifs repress, to different extents, enzyme activation by heavy metal exposure. These results highlight an ancestral function of the PCS elusive C-terminus as a regulatory domain inhibiting enzyme overactivation by essential and non-essential heavy metals. The latter finding may be relevant for obtaining crops with decreased root to shoot mobility of cadmium, thus preventing its accumulation in the food chain.


Assuntos
Aminoaciltransferases , Proteínas de Arabidopsis , Arabidopsis , Aminoaciltransferases/genética , Arabidopsis/genética , Cádmio/toxicidade , Fitoquelatinas
3.
Int J Mol Sci ; 21(15)2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32722033

RESUMO

Polyploidization is a frequent phenomenon in plants, which entails the increase from one generation to the next by multiples of the haploid number of chromosomes. While tetraploidization is arguably the most common and stable outcome of polyploidization, over evolutionary time triploids often constitute only a transient phase, or a "triploid bridge", between diploid and tetraploid levels. In this study, we reconstructed in a robust phylogenomic and statistical framework the evolutionary history of polyploidization in Arundo, a small genus from the Poaceae family with promising biomass, bioenergy and phytoremediation species. Through the obtainment of 10 novel leaf transcriptomes for Arundo and outgroup species, our results prove that recurrent demiduplication has likely been a major driver of evolution in this species-poor genus. Molecular dating further demonstrates that the species originating by demiduplication stalled in the "triploid bridge" for evolutionary times in the order of millions of years without undergoing tetratploidization. Nevertheless, we found signatures of molecular evolution highlighting some of the processes that accompanied the genus radiation. Our results clarify the complex nature of Arundo evolution and are valuable for future gene functional validation as well as reverse and comparative genomics efforts in the Arundo genus and other Arundinoideae.


Assuntos
Evolução Molecular , Filogenia , Poaceae/genética , Poliploidia
4.
Mol Biol Evol ; 34(10): 2583-2599, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28637270

RESUMO

Isoprene is the most abundant biogenic volatile hydrocarbon compound naturally emitted by plants and plays a major role in atmospheric chemistry. It has been proposed that isoprene synthases (IspS) may readily evolve from other terpene synthases, but this hypothesis has not been experimentally investigated. We isolated and functionally validated in Arabidopsis the first isoprene synthase gene, AdoIspS, from a monocotyledonous species (Arundo donax L., Poaceae). Phylogenetic reconstruction indicates that AdoIspS and dicots isoprene synthases most likely originated by parallel evolution from TPS-b monoterpene synthases. Site-directed mutagenesis demonstrated invivo the functional and evolutionary relevance of the residues considered diagnostic for IspS function. One of these positions was identified by saturating mutagenesis as a major determinant of substrate specificity in AdoIspS able to cause invivo a dramatic change in total volatile emission from hemi- to monoterpenes and supporting evolution of isoprene synthases from ocimene synthases. The mechanism responsible for IspS neofunctionalization by active site size modulation by a single amino acid mutation demonstrated in this study might be general, as the very same amino acidic position is implicated in the parallel evolution of different short-chain terpene synthases from both angiosperms and gymnosperms. Based on these results, we present a model reconciling in a unified conceptual framework the apparently contrasting patterns previously observed for isoprene synthase evolution in plants. These results indicate that parallel evolution may be driven by relatively simple biophysical constraints, and illustrate the intimate molecular evolutionary links between the structural and functional bases of traits with global relevance.


Assuntos
Alquil e Aril Transferases/genética , Arabidopsis/genética , Alquil e Aril Transferases/metabolismo , Sequência de Aminoácidos/genética , Arabidopsis/metabolismo , Butadienos , Evolução Molecular , Hemiterpenos , Mutagênese Sítio-Dirigida , Pentanos , Proteínas de Plantas/genética , Homologia de Sequência de Aminoácidos
5.
PLoS One ; 10(5): e0125199, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25933225

RESUMO

Species evolution depends on numerous and distinct forces, including demography and natural selection. For example, local adaptation and population structure affect the evolutionary history of species living along environmental clines. This is particularly relevant in plants, which are often characterized by limited dispersal ability and the need to respond to abiotic and biotic stress factors specific to the local environment. Here we study the demographic history and the possible existence of local adaptation in two related species of Brassicaceae, Cardamine impatiens and Cardamine resedifolia, which occupy separate habitats along the elevation gradient. Previous genome-wide analyses revealed the occurrence of distinct selective pressures in the two species, with genes involved in cold response evolving particularly fast in C. resedifolia. In this study we surveyed patterns of molecular evolution and genetic variability in a set of 19 genes, including neutral and candidate genes involved in cold response, across 10 populations each of C. resedifolia and C. impatiens from the Italian Alps (Trentino). We inferred the population structure and demographic history of the two species, and tested the occurrence of signatures of local adaptation in these genes. The results indicate that, despite a slightly higher population differentiation in C. resedifolia than in C. impatiens, both species are only weakly structured and that populations sampled at high altitude experience less gene flow than low-altitude ones. None of the genes showed signatures of positive selection, suggesting that they do not seem to play relevant roles in the current evolutionary processes of adaptation to alpine environments of these species.


Assuntos
Adaptação Fisiológica , Cardamine/fisiologia , Ecossistema , Teorema de Bayes , Cardamine/genética , Clima , Amplificação de Genes , Genes de Plantas , Genética Populacional , Itália , Modelos Biológicos , Dados de Sequência Molecular , Nucleotídeos/genética , Polimorfismo Genético , Dinâmica Populacional
6.
BMC Genomics ; 16: 306, 2015 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-25887666

RESUMO

BACKGROUND: Plastid genomes, also known as plastomes, are shaped by the selective forces acting on the fundamental cellular functions they code for and thus they are expected to preserve signatures of the adaptive path undertaken by different plant species during evolution. To identify molecular signatures of positive selection associated to adaptation to contrasting ecological niches, we sequenced with Solexa technology the plastomes of two congeneric Brassicaceae species with different habitat preference, Cardamine resedifolia and Cardamine impatiens. RESULTS: Following in-depth characterization of plastome organization, repeat patterns and gene space, the comparison of the newly sequenced plastomes between each other and with 15 fully sequenced Brassicaceae plastomes publically available in GenBank uncovered dynamic variation of the IR boundaries in the Cardamine lineage. We further detected signatures of positive selection in ten of the 75 protein-coding genes of the examined plastomes, identifying a range of chloroplast functions putatively involved in adaptive processes within the family. For instance, the three residues found to be under positive selection in RUBISCO could possibly be involved in the modulation of RUBISCO aggregation/activation and enzymatic specificty in Brassicaceae. In addition, our results points to differential evolutionary rates in Cardamine plastomes. CONCLUSIONS: Overall our results support the existence of wider signatures of positive selection in the plastome of C. resedifolia, possibly as a consequence of adaptation to high altitude environments. We further provide a first characterization of the selective patterns shaping the Brassicaceae plastomes, which could help elucidate the driving forces underlying adaptation and evolution in this important plant family.


Assuntos
Cardamine/fisiologia , Cloroplastos/genética , Genoma de Cloroplastos , Análise de Sequência de DNA/métodos , Adaptação Biológica , Cardamine/classificação , Cardamine/citologia , Cardamine/genética , Cloroplastos/metabolismo , Evolução Molecular , Dados de Sequência Molecular , Filogenia , Seleção Genética , Especificidade da Espécie
7.
Gene ; 442(1-2): 26-36, 2009 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-19393302

RESUMO

Apple Malus X domestica fruitlet abscission is preceded by a stimulation of ethylene biosynthesis and a gain in sensitivity to the hormone. This phase was studied by a differential screening carried out by cDNA-AFLP in abscising (AF) and non-abscising (NAF) fruitlet populations. Fifty-three primer combinations allowed for the isolation of 131, 66 and 30 differentially expressed bands from cortex, peduncle and seed, respectively. All sequences were then classified as up- or down-regulated by comparing the profile in AFs and NAFs. Almost all of these sequences showed significant homology to genes encoding proteins with known or putative function. The gene ontology analysis of the TDFs isolated indicated a deep change in metabolism, plastid and hormonal status, especially auxin. Furthermore, some common elements between abscission and senescence were identified. The isolation of the full length of one of these TDFs allowed for the identification of a gene encoding an auxin hydrogen symporter (MdAHS). Bioinformatic analysis indicated that the deduced protein shares some features with other auxin efflux carriers, which include PINs. Nevertheless the 3D structure pointed out substantial differences and a conformation largely dissimilar from canonical ion transporters. The expression analysis demonstrated that this gene is regulated by light and development but not affected by ethylene or auxin.


Assuntos
Frutas/genética , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Malus/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Simportadores/metabolismo , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , DNA Complementar , Etilenos/metabolismo , Etilenos/farmacologia , Frutas/efeitos dos fármacos , Frutas/fisiologia , Ácidos Indolacéticos/farmacologia , Malus/efeitos dos fármacos , Malus/genética , Reguladores de Crescimento de Plantas/farmacologia , Estrutura Secundária de Proteína , Simportadores/química , Simportadores/genética
8.
BMC Evol Biol ; 9: 62, 2009 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-19309501

RESUMO

BACKGROUND: In plants, expression of ARGONAUTE1 (AGO1), the catalytic subunit of the RNA-Induced Silencing Complex responsible for post-transcriptional gene silencing, is controlled through a feedback loop involving the miR168 microRNA. This complex auto-regulatory loop, composed of miR168-guided AGO1-catalyzed cleavage of AGO1 mRNA and AGO1-mediated stabilization of miR168, was shown to ensure the maintenance of AGO1 homeostasis that is pivotal for the correct functioning of the miRNA pathway. RESULTS: We applied different approaches to studying the genomic organization and the structural and functional evolution of MIR168 homologs in Brassicaeae. A whole genome comparison of Arabidopsis and poplar, phylogenetic footprinting and phylogenetic reconstruction were used to date the duplication events originating MIR168 homologs in these genomes. While orthology was lacking between Arabidopsis and poplar MIR168 genes, we successfully isolated orthologs of both loci present in Arabidopsis (MIR168a and MIR168b) from all the Brassicaceae species analyzed, including the basal species Aethionema grandiflora, thus indicating that (1) independent duplication events took place in Arabidopsis and poplar lineages and (2) the origin of MIR168 paralogs predates both the Brassicaceae radiation and the Arabidopsis alpha polyploidization. Different phylogenetic footprints, corresponding to known functionally relevant regions (transcription starting site and double-stranded structures responsible for microRNA biogenesis and function) or for which functions could be proposed, were found to be highly conserved among MIR168 homologs. Comparative predictions of the identified microRNAs also indicate extreme conservation of secondary structure and thermodynamic stability. CONCLUSION: We used a comparative phylogenetic footprinting approach to identify the structural and functional constraints that shaped MIR168 evolution in Brassicaceae. Although their duplication happened at least 40 million years ago, we found evidence that both MIR168 paralogs have been maintained throughout the evolution of Brassicaceae, most likely functionally as indicated by the extremely high conservation of functionally relevant regions, predicted secondary structure and thermodynamic profile. Interestingly, the expression patterns observed in Arabidopsis indicate that MIR168b underwent partial subfunctionalization as determined by the experimental characterization of its expression pattern provided in this study. We found further evolutionary evidence that pre-miR168 lower stem (the RNA-duplex structure adjacent to the miR-miR* stem) is significantly longer than animal lower stems and probably plays a relevant role in multi-step miR168 biogenesis.


Assuntos
Brassicaceae/genética , Evolução Molecular , MicroRNAs/genética , Arabidopsis/genética , Sequência de Bases , Pegada de DNA , Duplicação Gênica , Genes de Plantas , Genoma de Planta , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Filogenia , Populus/genética , RNA de Plantas/genética , Sintenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA