Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 16(10): 5294-5301, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38372161

RESUMO

Tau protein aggregates inside neurons in the course of Alzheimer's disease (AD). Because of the enormous number of people suffering from AD, this disease has become one of the world's major health and social problems. The presence of tau lesions clearly correlates with cognitive impairments in AD patients, thus, tau is the target of potential treatments for AD, next to amyloid-ß. The exact mechanism of tau aggregation has not been understood in detail so far; especially little is known about the structural rearrangements of tau aggregates at the growth phase. The research into tau conformation at each step of the aggregation pathway will contribute to the design of effective therapeutic approaches. To follow the secondary structure of individual tau aggregates at the growth phase, we applied tip-enhanced Raman spectroscopy (TERS). The nanospectroscopic approach enabled us to follow the structure of individual aggregates occurring in the subsequent phases of tau aggregation. We applied multivariate data analysis to extract the spectral differences for tau aggregates at different aggregation phases. Moreover, atomic force microscopy (AFM) allowed the tracking of the morphological alterations for species occurring with the progression of tau aggregation.


Assuntos
Doença de Alzheimer , Agregados Proteicos , Humanos , Análise Espectral Raman/métodos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides , Estrutura Secundária de Proteína
2.
Nanoscale ; 15(35): 14606-14614, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37614107

RESUMO

A better understanding of the abnormal protein aggregation and the effect of anti-aggregation agents on the fibrillation pathways and the secondary structure of aggregates can determine strategies for the early treatment of dementia. Herein, we present a combination of experimental and theoretical studies providing new insights into the influence of the anti-aggregation drug bexarotene on the secondary structure of individual amyloid-ß aggregates and its primary aggregation. The molecular rearrangements and the spatial distribution of ß-sheets within individual aggregates were monitored at the nanoscale with infrared nanospectroscopy. We observed that bexarotene limits the parallel ß-sheets formation, known to be highly abundant in fibrils at later phases of the amyloid-ß aggregation composed of in-register cross-ß structure. Moreover, we applied molecular dynamics to provide molecular-level insights into the investigated system. Both theoretical and experimental results revealed that bexarotene slows down the protein aggregation process via steric effects, largely prohibiting the antiparallel to parallel ß-sheet rearrangement. We also found that bexarotene interacts not only via the single hydrogen bond formation with the peptide backbone but also with the amino acid side residue via a hydrophobic effect. The studied model of the drug-amyloid-ß interaction contributes to a better understanding of the inhibition mechanism of the amyloid-ß aggregation by the small molecule drugs. However, our nanoscale findings need to meet in vivo research requiring different analytical approaches.


Assuntos
Peptídeos beta-Amiloides , Agregados Proteicos , Bexaroteno/farmacologia , Aminoácidos
3.
Theriogenology ; 205: 79-86, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37094460

RESUMO

Extracellular vesicles (EVs) are membrane-bound nanoparticles that are released by different cell types and play a crucial role in the intercellular communication. They carry various biomolecular compounds such as DNA, RNA, proteins, and lipids. Given that EVs are a new element of the communication within the ovarian follicle, extensive research is needed to optimize method of their isolation. The aim of the study was to assess size-exclusion chromatography (SEC) as a tool for effective EVs isolation from porcine ovarian follicular fluid. The characterization of EVs was performed by nanoparticle tracking analysis, transmission electron microscopy, atomic force microscopy, mass spectrometry and Western blot. We determined EVs concentration, size distribution, zeta potential, morphology, purity, and marker proteins. Our results show that SEC is an effective method for isolation of EVs from porcine follicular fluid. They displayed predominantly exosome properties with sufficient purity and possibility for further functional analyses, including proteomics.


Assuntos
Exossomos , Vesículas Extracelulares , Feminino , Animais , Suínos , Líquido Folicular , Vesículas Extracelulares/química , Exossomos/metabolismo , Cromatografia em Gel/veterinária , Proteínas/metabolismo
4.
Biomech Model Mechanobiol ; 22(1): 177-187, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36282360

RESUMO

We present a model useful for interpretation of indentation experiments on animal cells. We use finite element modeling for a thorough representation of the complex structure of an animal cell. In our model, the crucial constituent is the cell cortex-a rigid layer of cytoplasmic proteins present on the inner side of the cell membrane. It plays a vital role in the mechanical interactions between cells. The cell cortex is modeled by a three-dimensional solid to reflect its bending stiffness. This approach allows us to interpret the results of the indentation measurements and extract the mechanical properties of the individual elements of the cell structure. During the simulations, we scan a broad range of parameters such as cortex thickness and Young's modulus, cytoplasm Young's modulus, and indenter radius, which define cell properties and experimental conditions. Finally, we propose a simple closed-form formula that approximates the simulated results with satisfactory accuracy. Our formula is as easy to use as Hertz's function to extract cell properties from the measurement, yet it considers the cell's inner structure, including cell cortex, cytoplasm, and nucleus.


Assuntos
Módulo de Elasticidade , Animais , Membrana Celular , Citoplasma , Elasticidade
5.
Sci Rep ; 12(1): 12158, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35840615

RESUMO

DNA double-strand breaks (DSBs) are typical DNA lesions that can lead to cell death, translocations, and cancer-driving mutations. The repair process of DSBs is crucial to the maintenance of genomic integrity in all forms of life. However, the limitations of sensitivity and special resolution of analytical techniques make it difficult to investigate the local effects of chemotherapeutic drugs on DNA molecular structure. In this work, we exposed DNA to the anticancer antibiotic bleomycin (BLM), a damaging factor known to induce DSBs. We applied a multimodal approach combining (i) atomic force microscopy (AFM) for direct visualization of DSBs, (ii) surface-enhanced Raman spectroscopy (SERS) to monitor local conformational transitions induced by DSBs, and (iii) multivariate statistical analysis to correlate the AFM and SERS results. On the basis of SERS results, we identified that bands at 1050 cm-1 and 730 cm-1 associated with backbone and nucleobase vibrations shifted and changed their intensities, indicating conformational modifications and strand ruptures. Based on averaged SERS spectra, the PLS regressions for the number of DSBs caused by corresponding molar concentrations of bleomycin were calculated. The strong correlation (R2 = 0.92 for LV = 2) between the predicted and observed number of DSBs indicates, that the model can not only predict the number of DSBs from the spectra but also detect the spectroscopic markers of DNA damage and the associated conformational changes.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Bleomicina/farmacologia , DNA/química , Dano ao DNA
6.
Adv Colloid Interface Sci ; 306: 102692, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35753239

RESUMO

Random Sequential Adsorption (RSA) is one of the most efficient theoretical models used to investigate adsorption of macromolecules and particles, with a long-standing tradition in the field of colloid and interface science. In the first part of this paper, we demonstrate how the RSA model can be applied to interpret the experimental data and extract information about the density of the adsorption monolayer, the kinetics of its growth, and microstructural properties such as pair-correlation function and monolayer roughness. We briefly summarized the most important generalizations of the RSA model for monolayers and reviewed its extensions considering, e.g., various particle shapes, the introduction of electrostatic interaction, or adsorption on non-uniform substrates. We thoroughly scrutinized the extended RSA model developed for bilayer and multilayer formation. We collected the mean saturated packing fractions of various two- and three-dimensional objects and provided the most accurate result for two-dimensional disk packing. In the second part of this paper, we summarize various numerical algorithms and techniques that allow one to effectively implement RSA algorithms. We describe efficient methods for detecting intersections of various shapes and techniques enabling generation of strictly saturated RSA packings built of a wide range of different shapes. We hinted at how an inherently sequential RSA scheme can be parallelized. Finally, we critically discuss the limitations of the model and possible directions for future studies.


Assuntos
Coloides , Modelos Teóricos , Adsorção , Coloides/química , Cinética , Eletricidade Estática
7.
Phys Rev E ; 103(6-1): 062135, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34271740

RESUMO

The theory of stochastic processes provides theoretical tools which can be efficiently used to explore the properties of noise-induced escape kinetics. Since noise-facilitated escape over the potential barrier resembles free climbing, one can use the first-passage time theory in an analysis of rock climbing. We perform the analysis of the mean first-passage time in order to answer the question regarding the optimal, i.e., resulting in the fastest climbing, rope length. It is demonstrated that there is a discrete set of favorable rope lengths assuring the shortest climbing times, as they correspond to local minima of mean first-passage time. Within the set of favorable rope lengths there is the optimal rope giving rise to the shortest climbing time. In particular, more experienced climbers can decrease their climbing time by using longer ropes.

8.
Curr Opin Colloid Interface Sci ; 55: 101466, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34093061

RESUMO

The structure, size, and main physicochemical characteristics of the SARS-CoV-2 virion with the spike transmembrane protein corona were discussed. Using these data, diffusion coefficients of the virion in aqueous media and in air were calculated. The structure and dimensions of the spike protein derived from molecular dynamic modeling and thorough cryo-electron microscopy measurements were also analyzed. The charge distribution over the molecule was calculated and shown to be largely heterogeneous. Although the stalk part is negatively charged, the top part of the spike molecule, especially the receptor binding domain, remains positively charged for a broad range of pH. It is underlined that such a charge distribution promotes the spike corona stability and enhances the virion attachment to receptors and surfaces, mostly negatively charged. The review is completed by the analysis of experimental data pertinent to the spike protein adsorption at abiotic surfaces comprising nanoparticle carrier particles. It is argued that these theoretical and experimental data can be used for developing quantitative models of virus attachment to surfaces, facilitating adequate analysis of future experimental results.

9.
Cells ; 10(2)2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33499261

RESUMO

The endometrium lines the uterine cavity, enables implantation of the embryo, and provides an environment for its development and growth. Numerous methods, including microscopic and immunoenzymatic techniques, have been used to study the properties of the cells and tissue of the endometrium to understand changes during, e.g., the menstrual cycle or implantation. Taking into account the existing state of knowledge on the endometrium and the research carried out using other tissues, it can be concluded that the mechanical properties of the tissue and its cells are crucial for their proper functioning. This review intends to emphasize the potential of atomic force microscopy (AFM) in the research of endometrium properties. AFM enables imaging of tissues or single cells, roughness analysis, and determination of the mechanical properties (Young's modulus) of single cells or tissues, or their adhesion. AFM has been previously shown to be useful to derive force maps. Combining the information regarding cell mechanics with the alternations of cell morphology or gene/protein expression provides deeper insight into the uterine pathology. The determination of the elastic modulus of cells in pathological states, such as cancer, has been proved to be useful in diagnostics.


Assuntos
Pesquisa Biomédica/métodos , Endométrio/patologia , Microscopia de Força Atômica/métodos , Forma Celular , Endométrio/metabolismo , Feminino , Regulação da Expressão Gênica , Humanos , Análise Espectral
10.
Sci Rep ; 11(1): 509, 2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436725

RESUMO

A precise determination of the cantilever spring constant is the critical point of all colloidal probe experiments. Existing methods are based on approximations considering only cantilever geometry and do not take into account properties of any object or substance attached to the cantilever. Neglecting the influence of the colloidal sphere on the cantilever characteristics introduces significant uncertainty in a spring constant determination and affects all further considerations. In this work we propose a new method of spring constant calibration for 'colloidal probe' type cantilevers based on the direct measurement of force constant. The Optical Tweezers based calibration method will help to increase the accuracy and repeatability of the AFM colloidal probe experiments.

11.
Contemp Oncol (Pozn) ; 23(3): 174-177, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31798334

RESUMO

Cervical cancer is still an important cause of mortality among women in a number of countries. There are effective methods of prevention and early diagnosis, but they require well-trained medical professionals including cytologists. Within this project, we built a prototype of a new device together with implemented software using U-NET and CNN architectures of neural networks (ANN), to convert the currently used optical microscopes into fully independent scanning and evaluating systems for cytological samples. To evaluate the specificity and sensitivity of the system, 2058 (2000 normal and 58 abnormal samples) consecutive liquid-based cytology (LBC) samples were analysed. The observed sensitivity and specificity to distinguish normal and abnormal samples was 100%. We observed slight incompatibility in the evaluation of the type of abnormality. The use of ANN is promising for increasing the effectiveness of cervical screening. The low cost of neural network usage further increases the potential areas of application of the presented method. Further refinement of neural networks on a larger sample size is required to evaluate the software.

12.
Biochim Biophys Acta Gen Subj ; 1863(6): 1027-1039, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30876874

RESUMO

In this work we analyzed the quaternary structure of FAD-dependent 3-ketosteroid dehydrogenase (AcmB) from Sterolibacterium denitrificans, the protein that in solution forms massive aggregates (>600 kDa). Using size-excursion chromatography (SEC), dynamic light scattering (DLS), native-PAGE and atomic force microscopy (AFM) we studied the nature of enzyme aggregation. Partial protein de-aggregation was facilitated by the presence of non-ionic detergent such as Tween 20 or by a high degree of protein dilution but not by addition of a reducing agent or an increase of ionic strength. De-aggregating influence of Tween 20 had no impact on either enzyme's specific activity or FAD reconstitution to recombinant AcmB. The joint experimental (DLS, isoelectric focusing) and theoretical investigations demonstrated gradual shift of enzyme's isoelectric point upon aggregation from 8.6 for a monomeric form to even 5.0. The AFM imaging on mica or highly oriented pyrolytic graphite (HOPG) surface enabled observation of individual protein monomers deposited from a highly diluted solution (0.2 µg/ml). Such approach revealed that native AcmB can indeed be monomeric. AFM imaging supported by theoretical random sequential adsorption (RSA) kinetics allowed estimation of distribution enzyme forms in the bulk solution: 5%, monomer, 11.4% dimer and 12% trimer. Finally, based on results of AFM as well as analysis of the surface of AcmB homology models we have observed that aggregation is most probably initiated by hydrophobic forces and then assisted by electrostatic attraction between negatively charged aggregates and positively charged monomers.


Assuntos
Proteínas de Bactérias/química , Betaproteobacteria/enzimologia , Oxirredutases/química , Agregados Proteicos , Polissorbatos/química , Estrutura Quaternária de Proteína
13.
Langmuir ; 33(38): 9548-9557, 2017 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-28825842

RESUMO

Bulk physicochemical properties of neurotrophin 4 (NT-4) in electrolyte solutions and its adsorption/desorption on/from mica surfaces have been studied using dynamic light scattering (DLS), microelectrophoresis, a solution depletion technique (enzyme-linked immunosorbent assay, ELISA), and AFM imaging. Our study presents a determination of the diffusion coefficient, hydrodynamic diameters, electrophoretic mobility, and isoelectric point of the NT-4 under various ionic strength and pH conditions. The size of the NT-4 homodimer for an ionic strength of 0.015 M was substantially independent of pH and equal to 5.1 nm. It has been found that the number of electrokinetic charges per NT-4 molecule was equal to zero for all studied ionic strengths at pH 8.1, which was identified as the isoelectric point (iep). The protein adsorption/desorption on/from mica surfaces was examined as a function of ionic strength and pH. The kinetics of neurotrophin adsorption/desorption were evaluated at pH 3.5, 7.4, and 11 by direct AFM imaging and the ELISA technique. A monotonic increase in the maximum coverage of adsorbed NT-4 molecules with ionic strength (up to 5.5 mg/m2) was observed at pH 3.5. These results were interpreted in terms of the theoretical model postulating an irreversible adsorption of the protein governed by the random sequential adsorption (RSA). Our measurements revealed a significant role of ionic strength, pH, and electrolyte composition in the lateral electrostatic interactions among differently charged NT-4 molecules. The transition between adsorption/desorption processes is found for the region of high pH and low surface concentration of adsorbed neurotrophin molecules at constant ionic strength. Additionally, results presented in this work show that the adsorption behavior of neurotrophin molecules may be governed by intrasolvent electrostatic interactions yielding an aggregation process. Understanding polyvalent neurotrophin interactions may have an impact on the reversibility/irreversibility of adsorption, and hence they might be useful for obtaining well-ordered protein layers, targeting the future development of drug delivery systems for treating neurodegenerative diseases.


Assuntos
Fatores de Crescimento Neural/química , Adsorção , Fenômenos Químicos , Humanos , Concentração de Íons de Hidrogênio , Concentração Osmolar , Propriedades de Superfície
14.
J Nanobiotechnology ; 15(1): 32, 2017 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-28438164

RESUMO

BACKGROUND: Bacteriophage survives in at least two extremes of ionic environments: bacterial host (high ionic-cytosol) and that of soil (low ionic-environmental water). The impact of ionic composition in the micro- and macro-environments has not so far been addressed in phage biology. RESULTS: Here, we discovered a novel mechanism of aggregation/disaggregation transitions by phage virions. When normal sodium levels in phage media (150 mM) were lowered to 10 mM, advanced imaging by scanning electron microscopy, atomic force microscopy and dynamic light scattering all revealed formation of viral packages, each containing 20-100 virions. When ionic strength was returned from low to high, the aggregated state of phage reversed to a dispersed state, and the change in ionic strength did not substantially affect infectivity of the phage. By providing the direct evidence, that lowering of the sodium ion below the threshold of 20 mM causes rapid aggregation of phage while returning Na+ concentration to the values above this threshold causes dispersion of phage, we identified a biophysical mechanism of phage aggregation. CONCLUSIONS: Our results implicate operation of group behavior in phage and suggest a new kind of quorum sensing among its virions that is mediated by ions. Loss of ionic strength may act as a trigger in an evolutionary mechanism to improve the survival of bacteriophage by stimulating aggregation of phage when outside a bacterial host. Reversal of phage aggregation is also a promising breakthrough in biotechnological applications, since we demonstrated here the ability to retain viable virion aggregates on standard micro-filters.


Assuntos
Bacteriófago T4/fisiologia , Sódio/metabolismo , Bacteriófago T4/ultraestrutura , Cátions Monovalentes/metabolismo , Concentração Osmolar , Percepção de Quorum
15.
J Chem Phys ; 146(5): 054706, 2017 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-28178794

RESUMO

Random packings of disks on a mesh are studied numerically using random sequential adsorption algorithm. The mesh is built of straight horizontal and vertical one-dimensional lines of a given distance between them. The packing fraction and structure as well as the kinetics of packing growth dependence on mesh size are analyzed to provide information, whether surface inhomogeneity will affect the properties of random packings. It has been shown that the number of disks in a packing slightly decreases with growing distance between mesh lines while the kinetics may change significantly even for very dense meshes. As packings obtained in random sequential adsorption resemble monolayers produced by irreversible adsorption processes, results of this study show that by measuring properties of a random packing it may be possible to determine fine structure of an underlying surface.

16.
Colloids Surf B Biointerfaces ; 137: 183-90, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26296563

RESUMO

The adsorption of polyclonal immunoglobulin G (IgG) on negatively charged polystyrene microparticle suspension (latex) was studied by using the Laser Doppler Velocimetry (LDV) measurements. Using this technique, the dependence of the electrophoretic mobility of particles on the IgG concentration in the suspension was measured for various ionic strengths and pH 3.5. The increase in the electrophoretic mobility was quantitatively interpreted in terms of the 3D electrokinetic model. On the other hand, the maximum coverage of IgG on latex was determined using the depletion method based on AFM imaging. It was shown that IgG adsorption was irreversible and that its maximum coverage on the microspheres increased from 1.4mgm(-2) for 0.001M NaCl to 2.0mgm(-2) for 0.15M NaCl. This was interpreted in terms of reduced electrostatic repulsion among adsorbed molecules. The stability of IgG monolayers on the particles was confirmed in separate experiments where changes in its electrophoretic mobility were monitored over prolonged time periods. Additionally, the acid-base properties of the IgG monolayers on latex were determined in pH cycling experiments. The isoelectric point of the IgG monolayers on the microspheres was 4.8. The results obtained in this work indicate that basic physicochemical characteristics of IgG can be acquired via electrophoretic mobility measurements using microgram quantities of the protein.


Assuntos
Imunoglobulina G/química , Poliestirenos/química , Adsorção , Microesferas
17.
J Transl Med ; 13: 376, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26626416

RESUMO

BACKGROUND: Tumour cells release membrane micro(nano)fragments called tumour-derived microvesicles (TMV) that are believed to play an important role in cancer progression. TMV suppress/modify antitumour response of the host, but there is also some evidence for their direct interaction with cancer cells. In cancer patients TMV are present in body fluid and tumour microenvironment. The present study aimed at characterization of whole types/subpopulations, but not only exosomes, of TMV from newly established gastric cancer cell line (called GC1415) and to define their interactions with autologous cells. METHODS: TMV were isolated from cell cultures supernatants by centrifugation at 50,000×g and their phenotype was determined by flow cytometry. The size of TMV was analysed by dynamic light scattering and nanoparticle tracking analysis, while morphology by transmission electron microscopy and atomic force microscopy. Interactions of TMV with cancer cells were visualized using fluorescence-activated cell sorter, confocal and atomic force microscopy, biological effects by xenografts in NOD SCID mice. RESULTS: Isolated TMV showed expression of CD44H, CD44v6 (hyaluronian receptors), CCR6 (chemokine receptor) and HER-2/neu molecules, exhibited different shapes and sizes (range 60-900 nm, highest frequency of particles with size range of 80-120 nm). TMV attached to autologous cancer cells within 2 h and then were internalized by them at 24 h. CD44H, CD44v6 and CCR6 molecules may play a role in attachment of TMV to cancer cells, while HER-2 associated with CD24 be involved in promoting cancer cells growth. Pre-exposure of cancer cells to TMV resulted in enhancement of tumour growth and cancer cell-induced angiogenesis in NOD SCID mice model. CONCLUSIONS: TMV interact directly with cancer cells serving as macro-messengers and molecular cargo transfer between gastric cancer cells resulting in enhancement of tumour growth. TMV should be considered in future as target of anticancer therapy.


Assuntos
Micropartículas Derivadas de Células/metabolismo , Neoplasias Gástricas/metabolismo , Animais , Linhagem Celular Tumoral , Humanos , Imunofenotipagem , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Neoplasias Gástricas/imunologia , Neoplasias Gástricas/patologia
18.
Oncol Rep ; 34(5): 2768-75, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26324403

RESUMO

Micro(nano)vesicles (MV) are regarded as important messengers in cell-to-cell communication. There is also evidence for their pivotal role in cancer progression. Circulating MV are of different body cells origin, including tumor cell­derived MV (TMV) in cancer patients. Determination of circulating TMV is of importance because of their potential diagnostic and therapeutic applications. In the present study, an analysis of circulating MV in colorectal cancer (CRC) patients was undertaken. Plasma from healthy donors was used as the control. In order to define MV characteristics, two plasma fractions: obtained by sequential centrifugation at 15,000 x g (MV15) and 50,000 x g (MV50) were used for analysis. The two fractions possessed a large range of sizes: 70(80)-1,300(1,400) nm and the most common particles with sizes 70-90 nm, both in patients and controls. Atomic force microscopy images of MV50 revealed a heterogeneous population of particles with different shapes and sizes. MV15 contained an increased level of CD41+ and CD61+ particles, suggesting their platelet origin. No difference between patients and controls was observed. A more precise analysis of MV50 showed the increased level of particles expressing EGFR (HER-1/Erb B1), HER-2/neu and Mucin1 (MUC1), suggesting their tumor origin. The total level of MV50­expressing EGFR, HER-2/neu and MUC1 was enhanced in CRC patients. MV50 both of patients and controls attached to a colon cancer cell line (SW480) and to isolated blood monocytes at 2 h and were engulfed at 24 h. This uptake showed the lack of specificity. Thus, apart from the direct delivery of MV to the tumor site by plasma, monocytes carrying MV may also be involved in their transportation. Taken together, the presented data indicate that MV15 contain mainly platelet­derived particles, while MV50 from CRC patients are enriched in TMV. Interaction of MV with cancer cells may pin-point their role in communication between tumor cells, resulting in molecular cargo exchange between them.


Assuntos
Micropartículas Derivadas de Células/metabolismo , Neoplasias Colorretais/sangue , Integrina beta3/metabolismo , Glicoproteína IIb da Membrana de Plaquetas/metabolismo , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Micropartículas Derivadas de Células/imunologia , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , Potenciais da Membrana , Tamanho da Partícula
19.
Appl Biochem Biotechnol ; 176(3): 817-34, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25904037

RESUMO

The widespread use of silver nanoparticles (AgN) in the articles of common use justifies the need to investigate their effects on the human body. Nanosilver toxicity of highly purified, stable, and well-characterized Ag sol toward human immune cells at various differentiation stages has been studied. Human promyelocytic leukemia cells (HL-60) were differentiated to granulocytes using dimethyl sulfoxide and to macrophage-like cells by phorbol ester. Human monocytic cells (U-937) were differentiated to monocytes and macrophages by phorbol ester. In the presence of AgN, different changes of their survival time were observed depending on cell differentiation. Differentiated cells showed a significantly higher resistance than the non-differentiated cells, depending on the contact time and AgN concentration. In the presence of AgN at concentration of 25 mg/l, fraction of non-differentiated cells alive after 24 h was equal to 45 %; for granulocytes this number increased to 75 % and for macrophages to 65 %. The presence of AgN increases the levels of intracellular antioxidant -glutathione and of nitric oxide - one of inflammation mediators. By checking the effect caused by effluent obtained from AgN sol purification resulting at AgN sol purification, it was proved that cytotoxity should be attributed to the action of silver particles themselves.


Assuntos
Citotoxinas/química , Citotoxinas/toxicidade , Nanopartículas Metálicas , Monócitos/efeitos dos fármacos , Prata/química , Prata/toxicidade , Diferenciação Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Glutationa/metabolismo , Granulócitos/citologia , Granulócitos/efeitos dos fármacos , Células HL-60 , Humanos , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Monócitos/citologia , Monócitos/metabolismo , Óxido Nítrico/metabolismo , Fatores de Tempo
20.
Artigo em Inglês | MEDLINE | ID: mdl-25353476

RESUMO

Kinetics of random sequential adsorption (RSA) of disks on flat, two-dimensional surfaces is governed by a power law with exponent -1/2. The study has shown that for RSA of nearly spherically symmetric particles this exponent is -1/3, whereas other characteristics typically measured in RSA simulations approach values known for disks with the increase of symmetry of the particles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA