Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Genetics ; 188(2): 349-58, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21467570

RESUMO

Mitochondrial complex I is the largest multimeric enzyme of the respiratory chain. The lack of a model system with facile genetics has limited the molecular dissection of complex I assembly. Using Chlamydomonas reinhardtii as an experimental system to screen for complex I defects, we isolated, via forward genetics, amc1-7 nuclear mutants (for assembly of mitochondrial complex I) displaying reduced or no complex I activity. Blue native (BN)-PAGE and immunoblot analyses revealed that amc3 and amc4 accumulate reduced levels of the complex I holoenzyme (950 kDa) while all other amc mutants fail to accumulate a mature complex. In amc1, -2, -5-7, the detection of a 700 kDa subcomplex retaining NADH dehydrogenase activity indicates an arrest in the assembly process. Genetic analyses established that amc5 and amc7 are alleles of the same locus while amc1-4 and amc6 define distinct complementation groups. The locus defined by the amc5 and amc7 alleles corresponds to the NUOB10 gene, encoding PDSW, a subunit of the membrane arm of complex I. This is the first report of a forward genetic screen yielding the isolation of complex I mutants. This work illustrates the potential of using Chlamydomonas as a genetically tractable organism to decipher complex I manufacture.


Assuntos
Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Complexo I de Transporte de Elétrons/deficiência , Complexo I de Transporte de Elétrons/genética , Mutação , Complexo II de Transporte de Elétrons/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Eletroforese em Gel de Poliacrilamida , Teste de Complementação Genética , Genótipo , Immunoblotting , Mutagênese Insercional , Consumo de Oxigênio
2.
Eukaryot Cell ; 8(9): 1460-3, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19617392

RESUMO

Here we report the characterization of the Chlamydomonas reinhardtii gene ARG9, encoding the plastid resident N-acetyl ornithine aminotransferase, which is involved in arginine synthesis. Integration of an engineered ARG9 cassette in the plastid chromosome of the nuclear arg9 mutant restores arginine prototrophy. This suggests that ARG9 could be used as a new selectable marker for plastid transformation.


Assuntos
Proteínas de Algas/metabolismo , Chlamydomonas reinhardtii/enzimologia , Ornitina-Oxo-Ácido Transaminase/metabolismo , Plastídeos/enzimologia , Proteínas de Algas/genética , Sequência de Aminoácidos , Animais , Arginina/metabolismo , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Dados de Sequência Molecular , Ornitina-Oxo-Ácido Transaminase/genética , Plastídeos/genética , Plastídeos/metabolismo , Transporte Proteico
3.
Mol Genet Genomics ; 280(2): 93-110, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18563446

RESUMO

With more than 40 subunits, one FMN co-factor and eight FeS clusters, complex I or NADH:ubiquinone oxidoreductase is the largest multimeric respiratory enzyme in the mitochondria. In this review, we focus on the diversity of eukaryotic complex I. We describe the additional activities that have been reported to be associated with mitochondrial complex I and discuss their physiological significance. The recent identification of complex I-like enzymes in the hydrogenosome, a mitochondria-derived organelle is also discussed here. Complex I assembly in the mitochondrial inner membrane is an intricate process that requires the cooperation of the nuclear and mitochondrial genomes. The most prevalent forms of mitochondrial dysfunction in humans are deficiencies in complex I and remarkably, the molecular basis for 60% of complex I-linked defects is currently unknown. This suggests that mutations in yet-to-be-discovered assembly genes should exist. We review the different experimental systems for the study of complex I assembly. To our knowledge, in none of them, large screenings of complex I mutants have been performed. We propose that the unicellular green alga Chlamydomonas reinhardtii is a promising system for such a study. Complex I mutants can be easily scored on a phenotypical basis and a large number of transformants generated by insertional mutagenesis can be screened, which opens the possibility to find new genes involved in the assembly of the enzyme. Moreover, mitochondrial transformation, a recent technological advance, is now available, allowing the manipulation of all five complex I mitochondrial genes in this organism.


Assuntos
Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Animais , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Complexo I de Transporte de Elétrons/química , Células Eucarióticas , Humanos , Mitocôndrias/metabolismo , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Modelos Biológicos , Modelos Moleculares , Mutação , Organelas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA