Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
J Dairy Sci ; 103(5): 4100-4108, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32197850

RESUMO

Staphylococcus aureus is one of the main causative agents of food poisoning. This bacterium is an important component of cheese microbiota and plays an important role in foodborne diseases. Another important component of the microbiota is the lactic acid bacterium, which actively participates in processes that define the physicochemical, sensorial, and microbiological features of cheese. Of the various microbiological interactions in cheese, the interaction between lactic acid bacteria and Staph. aureus is most relevant. To this end, we evaluated the viability of Staph. aureus strains and the expression of their enterotoxins in cheeses produced experimentally, using Weissella paramesenteroides GIR16L4 or Lactobacillus rhamnosus D1 or both as starter cultures. Over 7 d, we observed that the presence of lactic acid bacteria did not impair Staph. aureus growth. However, via qPCR we observed a change in the gene expression of staphylococcal enterotoxins, suggesting that molecular communication exists between Staph. aureus strains and lactic acid bacteria in cheese.


Assuntos
Toxinas Bacterianas/metabolismo , Queijo/microbiologia , Enterotoxinas/metabolismo , Lacticaseibacillus rhamnosus/crescimento & desenvolvimento , Staphylococcus aureus/crescimento & desenvolvimento , Superantígenos/metabolismo , Weissella/crescimento & desenvolvimento , Animais , Toxinas Bacterianas/genética , Queijo/análise , Enterotoxinas/genética , Microbiologia de Alimentos , Lactobacillales/metabolismo , Lacticaseibacillus rhamnosus/metabolismo , Leite , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Superantígenos/genética , Transcriptoma , Weissella/metabolismo
2.
Braz. j. med. biol. res ; 36(8): 1079-1089, Aug. 2003. ilus, tab, graf
Artigo em Inglês | LILACS | ID: lil-340783

RESUMO

Proteoglycan and glycosaminoglycan content was analyzed in a model of rat mammary carcinoma to study the roles of these compounds in tumorigenesis. Hyaluronic acid and proteoglycans bearing chondroitin and/or dermatan sulfate chains were detected in solid tumors obtained after subcutaneous inoculation of Walker 256 rat carcinoma cells. About 10 percent of sulfated glycosaminoglycan chains corresponded to heparan sulfate. The small leucine-rich proteoglycan, decorin, was identified as one of the proteoglycans, in addition to others of higher molecular weight, by cross-reaction with an antiserum raised against pig laryngeal decorin and by N-terminal amino acid sequencing. Decorin was separated from other proteoglycans by hydrophobic chromatography and its complete structure was determined. It has a molecular weight of about 85 kDa and a dermatan chain of 45 kDa with 4-sulfated disaccharides. After degradation of the glycosaminoglycan chain, three core proteins of different molecular weight (36, 46 and 56 kDa) were identified. The presence of hyaluronic acid and decorin has been reported in a variety of tumors and tumor cells. In the Walker 256 mammary carcinoma model, hyaluronic acid may play an important role in tumor progression, since it provides a more hydrated extracellular matrix. On the other hand, decorin, which is expressed by stromal cells, represents a host defense response to tumor growth


Assuntos
Animais , Masculino , Ratos , Neoplasias da Mama Masculina , Carcinoma 256 de Walker , Glicosaminoglicanos , Proteoglicanas , Neoplasias da Mama Masculina , Carcinoma 256 de Walker , Eletroforese em Gel de Ágar , Eletroforese em Gel de Poliacrilamida , Glicosaminoglicanos , Ácido Hialurônico , Proteoglicanas , Ratos Sprague-Dawley , Células Estromais
3.
Braz J Med Biol Res ; 36(8): 1079-89, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12886463

RESUMO

Proteoglycan and glycosaminoglycan content was analyzed in a model of rat mammary carcinoma to study the roles of these compounds in tumorigenesis. Hyaluronic acid and proteoglycans bearing chondroitin and/or dermatan sulfate chains were detected in solid tumors obtained after subcutaneous inoculation of Walker 256 rat carcinoma cells. About 10% of sulfated glycosaminoglycan chains corresponded to heparan sulfate. The small leucine-rich proteoglycan, decorin, was identified as one of the proteoglycans, in addition to others of higher molecular weight, by cross-reaction with an antiserum raised against pig laryngeal decorin and by N-terminal amino acid sequencing. Decorin was separated from other proteoglycans by hydrophobic chromatography and its complete structure was determined. It has a molecular weight of about 85 kDa and a dermatan chain of 45 kDa with 4-sulfated disaccharides. After degradation of the glycosaminoglycan chain, three core proteins of different molecular weight (36, 46 and 56 kDa) were identified. The presence of hyaluronic acid and decorin has been reported in a variety of tumors and tumor cells. In the Walker 256 mammary carcinoma model, hyaluronic acid may play an important role in tumor progression, since it provides a more hydrated extracellular matrix. On the other hand, decorin, which is expressed by stromal cells, represents a host defense response to tumor growth.


Assuntos
Neoplasias da Mama/química , Carcinoma 256 de Walker/química , Proteínas de Neoplasias/análise , Proteoglicanas/análise , Animais , Decorina , Eletroforese em Gel de Ágar , Eletroforese em Gel de Poliacrilamida , Proteínas da Matriz Extracelular , Glicosaminoglicanos/análise , Ácido Hialurônico/análise , Masculino , Ratos , Ratos Sprague-Dawley , Células Estromais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA