Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39326936

RESUMO

The aim of this study was to evaluate the in vitro cytotoxic, genotoxic, and mutagenic potential and to determine the in silico ADME parameters of two synthetic ß-carboline alkaloids developed as prototypes of antitumor agents (NQBio-06 and NQBio-21). Additionally, acute toxicity of the compounds was evaluated in mice. The results from the MTT assay showed that NQBio-06 presented higher cytotoxicity in the ovarian cancer cell line TOV-21 G (IC50 = 2.5 µM, selectivity index = 23.7). NQBio-21 presented an IC50 of 6.9 µM and a selectivity index of 14.5 against MDA-MB-231 breast cancer cells. Comet assay results showed that NQBio-06 did not induce chromosomal breaks in vitro, but NQBio-21 was genotoxic with and without metabolic activation (S9 fraction). Micronucleus assay showed that both compounds were mutagenic. In addition, metabolic activation enhanced this effect in vitro. The in silico predictions showed that the compounds met the criteria set by Lipinski's rules, had strong prediction for intestinal absorption, and were possible substrates for P-glycoprotein. The in vivo results demonstrated that both the compounds exhibited low acute toxicity. These results suggest that the mechanisms underlying the cytotoxicity of NQBio-06 and NQBio-21 are related to DNA damage induction and that the use of S9 enhanced these effects. In vivo analysis showed signs of toxicity after a single administration of the compounds in mice. These findings highlight the potential of ß-carboline compounds as sources for the development of new anticancer chemotherapeutic agents.


Assuntos
Alcaloides , Neoplasias da Mama , Carbolinas , Neoplasias Ovarianas , Animais , Carbolinas/toxicidade , Carbolinas/farmacologia , Carbolinas/química , Feminino , Camundongos , Humanos , Linhagem Celular Tumoral , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Alcaloides/farmacologia , Alcaloides/química , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Antineoplásicos/farmacologia , Antineoplásicos/toxicidade , Antineoplásicos/química , Testes para Micronúcleos , Ensaio Cometa , Dano ao DNA/efeitos dos fármacos , Testes de Mutagenicidade , Mutagênicos/toxicidade
2.
Pathogens ; 11(12)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36558863

RESUMO

Malaria is an infectious disease widespread in underdeveloped tropical regions. The most severe form of infection is caused by Plasmodium falciparum, which can lead to development of cerebral malaria (CM) and is responsible for deaths and significant neurocognitive sequelae throughout life. In this context and considering the emergence and spread of drug-resistant P. falciparum isolates, the search for new antimalarial candidates becomes urgent. ß-carbolines alkaloids are good candidates since a wide range of biological activity for these compounds has been reported. Herein, we designed 20 chemical entities and performed an in silico virtual screening against a pool of P. falciparum molecular targets, the Brazilian Malaria Molecular Targets (BRAMMT). Seven structures showed potential to interact with PfFNR, PfPK7, PfGrx1, and PfATP6, being synthesized and evaluated for in vitro antiplasmodial activity. Among them, compounds 3−6 and 10 inhibited the growth of the W2 strain at µM concentrations, with low cytotoxicity against the human cell line. In silico physicochemical and pharmacokinetic properties were found to be favorable for oral administration. The compound 10 provided the best results against CM, with important values of parasite growth inhibition on the 5th day post-infection for both curative (67.9%) and suppressive (82%) assays. Furthermore, this compound was able to elongate mice survival and protect them against the development of the experimental model of CM (>65%). Compound 10 also induced reduction of the NO level, possibly by interaction with iNOS. Therefore, this alkaloid showed promising activity for the treatment of malaria and was able to prevent the development of experimental cerebral malaria (ECM), probably by reducing NO synthesis.

3.
Artigo em Inglês | MEDLINE | ID: mdl-33551097

RESUMO

The pharmacological potential of drugs must be evaluated to establish their potential therapeutic benefits and side effects. This evaluation includes assessment of the effects of hepatic enzymes that catalyse their metabolic activation. Previously, our research group synthesized and characterized a set of synthetic 3-alkyl pyridine alkaloid (3-APA) analogues that cause in vitro cytotoxic, genotoxic, and mutagenic effects in various human cancer cell lines. The present study aimed to evaluate these activities with the two most promising synthetic 3-APAs (3-APA 1 and 3-APA 2) against cell lines derived from breast cancer (MDA-MB-231), ovarian cancer (TOV-21 G) and lung fibroblasts (WI-26-VA4) with and without metabolic activation (S9 fraction). The cytotoxicity of the compounds was evaluated employing MTT and clonogenic assays. In addition, comet assays, γH2AX immunocytochemistry labelling assays and cytokinesis-block micronucleus tests were carried out to evaluate the potential of these compounds to induce chromosomal damage. The results obtained in the MTT assay showed that compound 3-APA 2 exhibited high selectivity index (SI) values (ranging between 21.0 and 92.6). In addition, the cytotoxicity of the compounds was clearly enhanced by metabolic activation. Moreover, both compounds were genotoxic and induced double-strand breaks in DNA and chromosomal lesions with and without S9. The cancer cell lines tested showed higher genotoxic sensitivity to the compounds than did the non-tumour cell line used as a reference. The genotoxic and mutagenic effects of the compounds were potentiated in experiments with metabolic activation. The data obtained in this study indicate that compound 3-APA 2 is more active against the human cancer cell lines tested, both with and without metabolic activation, and can therefore be considered a candidate drug to treat human ovarian and breast cancer.


Assuntos
Ativação Metabólica , Alcaloides/farmacologia , Antineoplásicos/farmacologia , Citocinese/efeitos dos fármacos , Dano ao DNA , Mutagênicos/farmacologia , Neoplasias/patologia , Ensaio Cometa , Humanos , Testes para Micronúcleos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Células Tumorais Cultivadas
4.
ACS Omega ; 2(11): 8264-8272, 2017 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30023579

RESUMO

The need to develop new alternatives for antimalarial treatment is urgent. Herein, we report the synthesis and antimalarial evaluation of a small library of synthetic 3-alkylpyridine marine alkaloid (3-APA) analogs. First, the compounds were evaluated in vitro against Plasmodium falciparum. The most active compound 5c was selected for optimization of its antimalarial properties. An in silico approach was used based on pure ab initio electronic structure prediction, and the results indicated that a substitution of the hydroxyl group by a fluorine atom could favor a more stable complex with heme at a molecular ratio of 2:1 (heme/3-APA halogenated). A new fluorinated 3-APA analog was synthesized (compound 7), and its antimalarial activity was re-evaluated. Compound 7 exhibited optimized antimalarial properties (P. falciparum IC50 = 2.5 µM), low genotoxicity, capacity to form a more stable heme/3-APA complex at a molecular ratio of 2:1, and conformity to RO5. The new compound, therefore, has great potential as a new lead antimalarial agent.

5.
Chem Biol Drug Des ; 90(1): 5-11, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-27995747

RESUMO

Triple-negative breast cancer (TNBC) is one of the most aggressive cancers in women. Additionally, presence of residual cancer stem cells (CSC) in TNBC has challenged the efficacy of chemotherapy. Thus, the development of new molecules with potential action against CSC is fundamental. In this study, six synthetic analogues of theonelladin C, a 3-alkylpyridine marine alkaloid, were tested for cytotoxic activity against human TNBC cell line (BT-549) and tumorspheres derived from BT-549. Cytotoxicity assay was performed by sulforhodamine B (SRB). BT-549 and tumorspheres were examined for CD44+/high /CD24-/low markers, indicative of CSC profile, by flow cytometry. Clonogenic assay was performed to verify inhibiting growth of tumorspheres by the synthetic analogues. Cell death by apoptosis was investigated employing annexin V assay. SRB assay on BT-549 cells revealed that compounds 1c and 2c were the most active of the series, with IC50 values of 18.66 and 9.8 µm, respectively. Compounds 1c and 2c were able to reduce both CSC-like population (CD44+/high /CD24-/low ) and non-CSC population (CD44+/high /CD24+/high ) in tumorsphere model. Clonogenic and annexin V assays confirmed the ability of 1c and 2c to induce growth inhibition and apoptosis in BT-549 cells and tumorspheres. These preliminary data indicate that these compounds are a promising class for development of anticancer agents.


Assuntos
Alcaloides/química , Antineoplásicos/química , Antígeno CD24/metabolismo , Receptores de Hialuronatos/metabolismo , Piranos/química , Piridinas/química , Alcaloides/isolamento & purificação , Alcaloides/farmacologia , Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Feminino , Humanos , Microscopia Confocal , Piranos/isolamento & purificação , Piranos/toxicidade , Piridinas/isolamento & purificação , Piridinas/toxicidade , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA