Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
ASN Neuro ; 15: 17590914231153481, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36714975

RESUMO

Central nervous system tumors, especially astrocytomas, are the solid neoplasms with the highest incidence and mortality rates in childhood. The diagnosis is based on histopathological characteristics, but molecular methods have been increasingly used. Translationally controlled tumor protein (TCTP) protein, encoded by the tumor protein, translationally controlled 1 (TPT1) gene, is a multifunctional protein with an important physiological role in the cell cycle. Expression of this protein has been associated with several neoplasms, including astrocytomas in adults. However, the role of this protein in pediatric astrocytomas is largely unknown. We aim to evaluate in cases of pediatric astrocytomas, the frequency of polymorphisms in the TPT1 gene and other genes associated with its molecular pathways, such as MTOR, MDM2, TP53, and CDKN1A, correlating it with protein expression and clinical variables, in formalin-fixed, paraffin-embedded (FFPE) samples. These samples were submitted to genotyping and immunohistochemistry analyses. The most revealing results refer to the MDM2 gene, rs117039649 [G/C], in which C polymorphic allele was observed only in the glioblastomas (p = .028). The CDKN1A gene, rs3176334 [T/C] presented a homozygous polymorphic genotype only in high-grade astrocytomas, when infiltrating tumors were compared (p = .039). The immunohistochemical expression of cytoplasmic MDM2 correlated with better survival rates in patients with glioblastoma (p = .018). The presence of polymorphisms in the MDM2 and CDKN1A genes, as well as a specific correlation between MDM2 expression, suggests a likely association with risk in pediatric astrocytomas. This study sought the probable role involved in the TCTP pathway, and associated proteins, in the tumorigenesis of pediatric astrocytomas, and some could have potential impact as prognostic markers in these patients.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Glioblastoma , Proteína Tumoral 1 Controlada por Tradução , Criança , Humanos , Astrocitoma/genética , Astrocitoma/metabolismo , Astrocitoma/patologia , Neoplasias Encefálicas/patologia , Genótipo , Polimorfismo Genético , Proteína Tumoral 1 Controlada por Tradução/genética
3.
Int J Mol Sci ; 23(22)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36430210

RESUMO

The COVID-19 pandemic, promoted by the SARS-CoV-2 respiratory virus, has resulted in widespread global morbidity and mortality. The immune response against this pathogen has shown a thin line between protective effects and pathological reactions resulting from the massive release of cytokines and poor viral clearance. The latter is possibly caused by exhaustion, senescence, or both of TCD8+ cells and reduced activity of natural killer (NK) cells. The imbalance between innate and adaptive responses during the early stages of infection caused by SARS-CoV-2 contributes to the ineffective control of viral spread. The present study evaluated the tissue immunoexpression of the tissue biomarkers (Arginase-1, CCR4, CD3, CD4, CD8, CD20, CD57, CD68, CD138, IL-4, INF-α, INF-γ, iNOS, PD-1, Perforin and Sphingosine-1) to understand the cellular immune response triggered in patients who died of COVID-19. We evaluated twenty-four paraffin-embedded lung tissue samples from patients who died of COVID-19 (COVID-19 group) and compared them with ten lung tissue samples from patients who died of H1N1pdm09 (H1N1 group) with the immunohistochemical markers mentioned above. In addition, polymorphisms in the Perforin gene were genotyped through Real-Time PCR. Significantly increased tissue immunoexpression of Arginase, CD4, CD68, CD138, Perforin, Sphingosine-1, and IL-4 markers were observed in the COVID-19 group. A significantly lower immunoexpression of CD8 and CD57 was also found in this group. It is suggested that patients who died from COVID-19 had a poor cellular response concerning viral clearance and adaptive response going through tissue repair.


Assuntos
COVID-19 , Vírus da Influenza A Subtipo H1N1 , Humanos , Arginase , Perforina , Esfingosina , Interleucina-4 , Pandemias , SARS-CoV-2 , Imunidade Celular
4.
Viruses ; 14(8)2022 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-36016321

RESUMO

COVID-19 is a viral disease associated with an intense inflammatory response. Macrophage Activation Syndrome (MAS), the complication present in secondary hemophagocytic lymphohistiocytosis (sHLH), shares many clinical aspects observed in COVID-19 patients, and investigating the cytolytic function of the responsible cells for the first line of the immune response is important. Formalin-fixed paraffin-embedded lung tissue samples obtained by post mortem necropsy were accessed for three groups (COVID-19, H1N1, and CONTROL). Polymorphisms in MAS cytolytic pathway (PRF1; STX11; STXBP2; UNC13D and GZMB) were selected and genotyping by TaqMan® assays (Thermo Fisher Scientific, MA, USA) using Real-Time PCR (Applied Biosystems, MA USA). Moreover, immunohistochemistry staining was performed with a monoclonal antibody against perforin, CD8+ and CD57+ proteins. Histopathological analysis showed high perforin tissue expression in the COVID-19 group; CD8+ was high in the H1N1 group and CD57+ in the CONTROL group. An association could be observed in two genes related to the cytolytic pathway (PRF1 rs885822 G/A and STXBP2 rs2303115 G/A). Furthermore, PRF1 rs350947132 was associated with increased immune tissue expression for perforin in the COVID-19 group. The genotype approach could help identify patients that are more susceptible, and for this reason, our results showed that perforin and SNPs in the PRF1 gene can be involved in this critical pathway in the context of COVID-19.


Assuntos
COVID-19 , Vírus da Influenza A Subtipo H1N1 , Síndrome de Ativação Macrofágica , Biópsia , COVID-19/genética , Humanos , Vírus da Influenza A Subtipo H1N1/metabolismo , Proteínas de Membrana/genética , Perforina/genética , Perforina/metabolismo , Polimorfismo de Nucleotídeo Único
5.
J Child Neurol ; 37(6): 534-540, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35450457

RESUMO

BACKGROUND: Embryonic stem cell markers, such as SOX2, NANOG, and OCT4, are transcription factors expressed in pluripotent stem cells, involved in the mediation of pluripotency and self-renewal. Especially after the discovery of cancer stem cells, these proteins have been associated with several types of neoplasia, including astrocytomas. In the pediatric population, astrocytomas are the most common solid neoplasia and present the highest mortality rates. METHODS: Our study evaluated 5 polymorphisms in SOX2, NANOG, and POU5F1 genes in 101 pediatric astrocytoma samples. RESULTS: We describe the associations between wild and polymorphic alleles in astrocytomas. CONCLUSIONS: In our results, the intronic polymorphic G allele in SOX2 rs77677339 [G/A] had a borderline association with low-grade astrocytomas, and the intronic polymorphic T allele in NANOG rs10845877 [C/T] showed a higher frequency in grade 2, compared to grade 1 astrocytomas, thus showing promising results. IMPACT: Our study is relevant because it shows a potential correlation between polymorphic embryonic stem cell marker genes and pediatric astrocytomas.


Assuntos
Astrocitoma , Proteína Homeobox Nanog , Fatores de Transcrição SOXB1 , Astrocitoma/genética , Criança , Células-Tronco Embrionárias/metabolismo , Humanos , Proteína Homeobox Nanog/genética , Fatores de Transcrição SOXB1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA