Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 23(25): 255305, 2012 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-22652838

RESUMO

In this work, we clarify the features of the lateral damage of line defects in single layer graphene. The line defects were produced through well-controlled etching of graphene using a Ga(+) focused ion beam. The lateral damage length was obtained from both the integrated intensity of the disorder induced Raman D band and the minimum ion fluence. Also, the line defects were characterized by polarized Raman spectroscopy. It was found that graphene is resilient under the etching conditions since the intensity of the defect induced Raman D peak exhibits a dependence on the direction of the lines relative to the crystalline lattice and also on the direction of the laser polarization relative to the lines. In addition, electrical measurements of the modified graphene were performed. Different ion fluences were used in order to obtain a completely insulating defect line in graphene, which was determined experimentally by means of charge injection and electric force microscopy measurements. These studies demonstrate that a Ga+ ion column combined with Raman spectroscopy is a powerful technique to produce and understand well-defined periodic arrays of defects in graphene, opening possibilities for better control of nanocarbon devices.

2.
Phys Rev Lett ; 102(2): 025501, 2009 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-19257288

RESUMO

The mechanical response of single-wall carbon nanotubes to radial compression is investigated via atomic force microscopy (AFM). We find that the force F applied by an AFM tip (with radius R) onto a nanotube (with diameter d), rescaled through the quantity Fd;{3/2}(2R);{-1/2}, falls into a universal curve as a function of the compressive strain. Such universality is reproduced analytically in a model where the graphene bending modulus is the only fitting parameter. The application of this model to the radial Young's modulus E_{r} leads to a further universal-type behavior which explains the large variations of nanotube E_{r} reported in the literature.

3.
Phys Rev Lett ; 100(25): 256804, 2008 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-18643691

RESUMO

We report the direct experimental observation of the semiconductor-metal transition in single-wall carbon nanotubes (SWNTs) induced by compression with the tip of an atomic force microscope. This transition is probed via electric force microscopy by monitoring SWNT charge storage. Experimental data show that such charge storage is different for metallic and semiconducting SWNTs, with the latter presenting a strong dependence on the tip-SWNT force during injection. Ab initio calculations corroborate experimental observations and their interpretation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA