Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Sci Adv ; 7(39): eabi7673, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34559560

RESUMO

The origin, development, and legacy of the enigmatic Etruscan civilization from the central region of the Italian peninsula known as Etruria have been debated for centuries. Here we report a genomic time transect of 82 individuals spanning almost two millennia (800 BCE to 1000 CE) across Etruria and southern Italy. During the Iron Age, we detect a component of Indo-European­associated steppe ancestry and the lack of recent Anatolian-related admixture among the putative non­Indo-European­speaking Etruscans. Despite comprising diverse individuals of central European, northern African, and Near Eastern ancestry, the local gene pool is largely maintained across the first millennium BCE. This drastically changes during the Roman Imperial period where we report an abrupt population-wide shift to ~50% admixture with eastern Mediterranean ancestry. Last, we identify northern European components appearing in central Italy during the Early Middle Ages, which thus formed the genetic landscape of present-day Italian populations.

2.
Mol Ecol Resour ; 21(8): 2614-2628, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33000507

RESUMO

Inferring past demographic histories is crucial in population genetics, and the amount of complete genomes now available should in principle facilitate this inference. In practice, however, the available inferential methods suffer from severe limitations. Although hundreds complete genomes can be simultaneously analysed, complex demographic processes can easily exceed computational constraints, and the procedures to evaluate the reliability of the estimates contribute to increase the computational effort. Here we present an approximate Bayesian computation framework based on the random forest algorithm (ABC-RF), to infer complex past population processes using complete genomes. To this aim, we propose to summarize the data by the full genomic distribution of the four mutually exclusive categories of segregating sites (FDSS), a statistic fast to compute from unphased genome data and that does not require the ancestral state of alleles to be known. We constructed an efficient ABC pipeline and tested how accurately it allows one to recognize the true model among models of increasing complexity, using simulated data and taking into account different sampling strategies in terms of number of individuals analysed, number and size of the genetic loci considered. We also compared the FDSS with the unfolded and folded site frequency spectrum (SFS), and for these statistics we highlighted the experimental conditions maximizing the inferential power of the ABC-RF procedure. We finally analysed real data sets, testing models on the dispersal of anatomically modern humans out of Africa and exploring the evolutionary relationships of the three species of Orangutan inhabiting Borneo and Sumatra.


Assuntos
Hominidae , Modelos Genéticos , Animais , Teorema de Bayes , Simulação por Computador , Genética Populacional , Humanos , Reprodutibilidade dos Testes
3.
Genes (Basel) ; 11(12)2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33322364

RESUMO

To reconstruct aspects of human demographic history, linguistics and genetics complement each other, reciprocally suggesting testable hypotheses on population relationships and interactions. Relying on a linguistic comparative method based on syntactic data, here we focus on the non-straightforward relation of genes and languages among Finno-Ugric (FU) speakers, in comparison to their Indo-European (IE) and Altaic (AL) neighbors. Syntactic analysis, in agreement with the indications of more traditional linguistic levels, supports at least three distinct clusters, corresponding to these three Eurasian families; yet, the outliers of the FU group show linguistic convergence with their geographical neighbors. By analyzing genome-wide data in both ancient and contemporary populations, we uncovered remarkably matching patterns, with north-western FU speakers linguistically and genetically closer in parallel degrees to their IE-speaking neighbors, and eastern FU speakers to AL speakers. Therefore, our analysis indicates that plausible cross-family linguistic interference effects were accompanied, and possibly caused, by recognizable demographic processes. In particular, based on the comparison of modern and ancient genomes, our study identified the Pontic-Caspian steppes as the possible origin of the demographic processes that led to the expansion of FU languages into Europe.


Assuntos
Variação Genética , Genoma Humano , Migração Humana , Idioma , População Branca , Europa (Continente)/etnologia , História Antiga , Humanos , População Branca/etnologia , População Branca/genética , População Branca/história
4.
Genes (Basel) ; 11(12)2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33339234

RESUMO

There is a wide consensus in considering Africa as the birthplace of anatomically modern humans (AMH), but the dispersal pattern and the main routes followed by our ancestors to colonize the world are still matters of debate. It is still an open question whether AMH left Africa through a single process, dispersing almost simultaneously over Asia and Europe, or in two main waves, first through the Arab Peninsula into southern Asia and Australo-Melanesia, and later through a northern route crossing the Levant. The development of new methodologies for inferring population history and the availability of worldwide high-coverage whole-genome sequences did not resolve this debate. In this work, we test the two main out-of-Africa hypotheses through an Approximate Bayesian Computation approach, based on the Random-Forest algorithm. We evaluated the ability of the method to discriminate between the alternative models of AMH out-of-Africa, using simulated data. Once assessed that the models are distinguishable, we compared simulated data with real genomic variation, from modern and archaic populations. This analysis showed that a model of multiple dispersals is four-fold as likely as the alternative single-dispersal model. According to our estimates, the two dispersal processes may be placed, respectively, around 74,000 and around 46,000 years ago.


Assuntos
Simulação por Computador , Genoma Humano , Hominidae , Migração Humana/história , Aprendizado de Máquina , Modelos Teóricos , África , Animais , Ásia , Teorema de Bayes , Evolução Biológica , Europa (Continente) , Variação Genética , História Antiga , Humanos , Homem de Neandertal/genética , Grupos Raciais/genética
5.
Eur J Hum Genet ; 27(4): 647-656, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30651584

RESUMO

From the first century AD, Europe has been interested by population movements, commonly known as Barbarian migrations. Among these processes, the one involving the Longobard culture interested a vast region, but its dynamics and demographic impact remains largely unknown. Here we report 87 new complete mitochondrial sequences coming from nine early-medieval cemeteries located along the area interested by the Longobard migration (Czech Republic, Hungary and Italy). From the same areas, we sampled necropoleis characterized by cultural markers associated with the Longobard culture (LC) and coeval burials where no such markers were found, or with a chronology slightly preceding the presumed arrival of the Longobards in that region (NLC). Population genetics analysis and demographic modeling highlighted a similarity between LC individuals, as reflected by the sharing of quite rare haplogroups and by the degree of genetic resemblance between Hungarian and Italian LC necropoleis estimated via a Bayesian approach, ABC. The demographic model receiving the strongest statistical support also postulates a contact between LC and NLC communities, thus indicating a complex dynamics of admixture in medieval Europe.


Assuntos
DNA Antigo/análise , DNA Mitocondrial/genética , Genoma Mitocondrial/genética , Migração Humana/história , Teorema de Bayes , Cemitérios , República Tcheca , Haplótipos/genética , História Medieval , Humanos , Hungria , Itália
6.
Nat Commun ; 9(1): 3547, 2018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30206220

RESUMO

Despite centuries of research, much about the barbarian migrations that took place between the fourth and sixth centuries in Europe remains hotly debated. To better understand this key era that marks the dawn of modern European societies, we obtained ancient genomic DNA from 63 samples from two cemeteries (from Hungary and Northern Italy) that have been previously associated with the Longobards, a barbarian people that ruled large parts of Italy for over 200 years after invading from Pannonia in 568 CE. Our dense cemetery-based sampling revealed that each cemetery was primarily organized around one large pedigree, suggesting that biological relationships played an important role in these early medieval societies. Moreover, we identified genetic structure in each cemetery involving at least two groups with different ancestry that were very distinct in terms of their funerary customs. Finally, our data are consistent with the proposed long-distance migration from Pannonia to Northern Italy.


Assuntos
Genômica , Migração Humana/história , Paleontologia/história , Comportamento Social , Arqueologia , Cemitérios , Geografia , História Medieval , Humanos , Filogenia , Análise de Componente Principal , Isótopos de Estrôncio
7.
Am J Phys Anthropol ; 167(3): 497-506, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30187463

RESUMO

OBJECTIVES: With the advent of ancient DNA analyses, it has been possible to disentangle the contribution of ancient populations to the genetic pool of the modern inhabitants of many regions. Reconstructing the maternal ancestry has often highlighted genetic continuity over several millennia, but almost always in isolated areas. Here we analyze North-western Tuscany, a region that was a corridor of exchanges between Central Italy and the Western Mediterranean coast. MATERIALS AND METHODS: We newly obtained mitochondrial HVRI sequences from 28 individuals, and after gathering published data, we collected genetic information for 119 individuals from the region. Those span five periods during the last 5,000 years: Prehistory, Etruscan age, Roman age, Renaissance, and Present-day. We used serial coalescent simulations in an approximate Bayesian computation framework to test for continuity between the mentioned groups. RESULTS: Our analyses always favor continuity over discontinuity for all groups considered, with the Etruscans being part of the genealogy. Moreover, the posterior distributions of the parameters support very small female effective population sizes. CONCLUSIONS: The observed signals of long-term genetic continuity and isolation are in contrast with the history of the region, conquered several times (Etruscans, Romans, Lombards, and French). While the Etruscans appear as a local population, intermediate between the prehistoric and the other samples, we suggest that the other conquerors-arriving from far-had a consistent social or sex bias, hence only marginally affecting the maternal lineages. At the same time, our results show that long-term genealogical continuity is not necessarily linked to geographical isolation.


Assuntos
DNA Antigo/análise , Evolução Molecular , Genótipo , Antropologia Física , Teorema de Bayes , DNA Mitocondrial/genética , Feminino , Variação Genética , Técnicas de Genotipagem , Humanos , Itália
8.
Science ; 361(6401): 511-516, 2018 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-30072539

RESUMO

Flores Island, Indonesia, was inhabited by the small-bodied hominin species Homo floresiensis, which has an unknown evolutionary relationship to modern humans. This island is also home to an extant human pygmy population. Here we describe genome-scale single-nucleotide polymorphism data and whole-genome sequences from a contemporary human pygmy population living on Flores near the cave where H. floresiensis was found. The genomes of Flores pygmies reveal a complex history of admixture with Denisovans and Neanderthals but no evidence for gene flow with other archaic hominins. Modern individuals bear the signatures of recent positive selection encompassing the FADS (fatty acid desaturase) gene cluster, likely related to diet, and polygenic selection acting on standing variation that contributed to their short-stature phenotype. Thus, multiple independent instances of hominin insular dwarfism occurred on Flores.


Assuntos
Adaptação Biológica/genética , Evolução Biológica , Estatura/genética , Nanismo/genética , Ilhas , População/genética , Seleção Genética , Animais , Fluxo Gênico , Genoma Humano , Humanos , Indonésia , Homem de Neandertal/genética
9.
Sci Rep ; 8(1): 682, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29317771

RESUMO

A correction to this article has been published and is linked from the HTML version of this paper. The error has not been fixed in the paper.

10.
Proc Biol Sci ; 284(1867)2017 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-29167359

RESUMO

It is unclear whether Indo-European languages in Europe spread from the Pontic steppes in the late Neolithic, or from Anatolia in the Early Neolithic. Under the former hypothesis, people of the Globular Amphorae culture (GAC) would be descended from Eastern ancestors, likely representing the Yamnaya culture. However, nuclear (six individuals typed for 597 573 SNPs) and mitochondrial (11 complete sequences) DNA from the GAC appear closer to those of earlier Neolithic groups than to the DNA of all other populations related to the Pontic steppe migration. Explicit comparisons of alternative demographic models via approximate Bayesian computation confirmed this pattern. These results are not in contrast to Late Neolithic gene flow from the Pontic steppes into Central Europe. However, they add nuance to this model, showing that the eastern affinities of the GAC in the archaeological record reflect cultural influences from other groups from the East, rather than the movement of people.


Assuntos
Variação Genética , Genoma Humano , Migração Humana/história , Idioma/história , Arqueologia , Teorema de Bayes , Núcleo Celular/genética , DNA Antigo/análise , DNA Mitocondrial/genética , Europa (Continente) , História Antiga , Humanos
11.
Sci Rep ; 7(1): 3525, 2017 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-28615641

RESUMO

Archaeological evidence shows that, in the long run, Neolitization (the transition from foraging to food production) was associated with demographic growth. We used two methods (patterns of linkage disequilibrium from whole-genome SNPs and MSMC estimates on genomes) to reconstruct the demographic profiles for respectively 64 and 24 modern-day populations with contrasting lifestyles across the Old World (sub-Saharan Africa, south-eastern Asia, Siberia). Surprisingly, in all regions, food producers had larger effective population sizes (N e) than foragers already 20 k years ago, well before the Neolithic revolution. As expected, this difference further increased ~12-10 k years ago, around or just before the onset of food production. Using paleoclimate reconstructions, we show that the early difference in N e cannot be explained by food producers inhabiting more favorable regions. A number of mechanisms, including ancestral differences in census size, sedentism, exploitation of the natural resources, social stratification or connectivity between groups, might have led to the early differences in Ne detected in our analyses. Irrespective of the specific mechanisms involved, our results provide further evidence that long term cultural differences among populations of Palaeolithic hunter-gatherers are likely to have played an important role in the later Neolithization process.


Assuntos
Evolução Cultural , Estilo de Vida , Densidade Demográfica , Grupos Populacionais , África , Sudeste Asiático , Genômica , Humanos , Polimorfismo de Nucleotídeo Único , Sibéria
12.
Sci Rep ; 7: 42869, 2017 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-28256601

RESUMO

Little is known about the genetic prehistory of Sardinia because of the scarcity of pre-Neolithic human remains. From a genetic perspective, modern Sardinians are known as genetic outliers in Europe, showing unusually high levels of internal diversity and a close relationship to early European Neolithic farmers. However, how far this peculiar genetic structure extends and how it originated was to date impossible to test. Here we present the first and oldest complete mitochondrial sequences from Sardinia, dated back to 10,000 yBP. These two individuals, while confirming a Mesolithic occupation of the island, belong to rare mtDNA lineages, which have never been found before in Mesolithic samples and that are currently present at low frequencies not only in Sardinia, but in the whole Europe. Preliminary Approximate Bayesian Computations, restricted by biased reference samples for Mesolithic Sardinia (the two typed samples) and Neolithic Europe (limited to central and north European sequences), suggest that the first inhabitants of the island have had a small or negligible contribution to the present-day Sardinian population, which mainly derives its genetic diversity from continental migration into the island by Neolithic times.


Assuntos
Variação Genética , Genoma Mitocondrial , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Teorema de Bayes , Evolução Molecular , Genética Populacional , Humanos , Itália , Filogenia
13.
Science ; 354(6311): 477-481, 2016 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-27789843

RESUMO

Our closest living relatives, chimpanzees and bonobos, have a complex demographic history. We analyzed the high-coverage whole genomes of 75 wild-born chimpanzees and bonobos from 10 countries in Africa. We found that chimpanzee population substructure makes genetic information a good predictor of geographic origin at country and regional scales. Multiple lines of evidence suggest that gene flow occurred from bonobos into the ancestors of central and eastern chimpanzees between 200,000 and 550,000 years ago, probably with subsequent spread into Nigeria-Cameroon chimpanzees. Together with another, possibly more recent contact (after 200,000 years ago), bonobos contributed less than 1% to the central chimpanzee genomes. Admixture thus appears to have been widespread during hominid evolution.


Assuntos
Evolução Molecular , Variação Genética , Pan paniscus/genética , Pan troglodytes/genética , Animais , Camarões , Fluxo Gênico , Genoma , Genômica , Haplótipos , Nigéria , População
14.
Genome Biol Evol ; 8(6): 2020-30, 2016 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-27345955

RESUMO

The genus Pan is the closest genus to our own and it includes two species, Pan paniscus (bonobos) and Pan troglodytes (chimpanzees). The later is constituted by four subspecies, all highly endangered. The study of the Pan genera has been incessantly complicated by the intricate relationship among subspecies and the statistical limitations imposed by the reduced number of samples or genomic markers analyzed. Here, we present a new method to reconstruct complete mitochondrial genomes (mitogenomes) from whole genome shotgun (WGS) datasets, mtArchitect, showing that its reconstructions are highly accurate and consistent with long-range PCR mitogenomes. We used this approach to build the mitochondrial genomes of 20 newly sequenced samples which, together with available genomes, allowed us to analyze the hitherto most complete Pan mitochondrial genome dataset including 156 chimpanzee and 44 bonobo individuals, with a proportional contribution from all chimpanzee subspecies. We estimated the separation time between chimpanzees and bonobos around 1.15 million years ago (Mya) [0.81-1.49]. Further, we found that under the most probable genealogical model the two clades of chimpanzees, Western + Nigeria-Cameroon and Central + Eastern, separated at 0.59 Mya [0.41-0.78] with further internal separations at 0.32 Mya [0.22-0.43] and 0.16 Mya [0.17-0.34], respectively. Finally, for a subset of our samples, we compared nuclear versus mitochondrial genomes and we found that chimpanzee subspecies have different patterns of nuclear and mitochondrial diversity, which could be a result of either processes affecting the mitochondrial genome, such as hitchhiking or background selection, or a result of population dynamics.


Assuntos
Evolução Molecular , Genoma Mitocondrial/genética , Pan paniscus/genética , Pan troglodytes/genética , Animais , Variação Genética , Genética Populacional , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Filogenia
15.
J Anthropol Sci ; 94: 147-55, 2016 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-27081010

RESUMO

Beyond its theoretical success, the development of molecular genetics has brought about the possibility of extraordinary progress in the study of classification and in the inference of the evolutionary history of many species and populations. A major step forward was represented by the availability of extremely large sets of molecular data suited to quantitative and computational treatments. In this paper, we argue that even in cognitive sciences, purely theoretical progress in a discipline such as linguistics may have analogous impact. Thus, exactly on the model of molecular biology, we propose to unify two traditionally unrelated lines of linguistic investigation: 1) the formal study of syntactic variation (parameter theory) in the biolinguistic program; 2) the reconstruction of relatedness among languages (phylogenetic taxonomy). The results of our linguistic analysis have thus been plotted against data from population genetics and the correlations have turned out to be largely significant: given a non-trivial set of languages/populations, the description of their variation provided by the comparison of systematic parametric analysis and molecular anthropology informatively recapitulates their history and relationships. As a result, we can claim that the reality of some parametric model of the language faculty and language acquisition/transmission (more broadly of generative grammar) receives strong and original support from its historical heuristic power. Then, on these grounds, we can begin testing Darwin's prediction that, when properly generated, the trees of human populations and of their languages should eventually turn out to be significantly parallel.


Assuntos
Antropologia , Evolução Biológica , Genética Populacional , Linguística , Ciência Cognitiva , Humanos
16.
J Am Soc Nephrol ; 27(10): 2983-2996, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26966016

RESUMO

Common variants in the UMOD gene encoding uromodulin, associated with risk of hypertension and CKD in the general population, increase UMOD expression and urinary excretion of uromodulin, causing salt-sensitive hypertension and renal lesions. To determine the effect of selective pressure on variant frequency, we investigated the allelic frequency of the lead UMOD variant rs4293393 in 156 human populations, in eight ancient human genomes, and in primate genomes. The T allele of rs4293393, associated with CKD risk, has high frequency in most modern populations and was the one detected in primate genomes. In contrast, we identified only the derived, C allele in Denisovan and Neanderthal genomes. The distribution of the UMOD ancestral allele did not follow the ancestral susceptibility model observed for variants associated with salt-sensitive hypertension. Instead, the global frequencies of the UMOD alleles significantly correlated with pathogen diversity (bacteria, helminths) and prevalence of antibiotic-resistant urinary tract infections (UTIs). The inverse correlation found between urinary levels of uromodulin and markers of UTIs in the general population substantiates the link between UMOD variants and protection against UTIs. These data strongly suggest that the UMOD ancestral allele, driving higher urinary excretion of uromodulin, has been kept at a high frequency because of its protective effect against UTIs.


Assuntos
Evolução Molecular , Uromodulina/genética , Animais , Loci Gênicos , Marcadores Genéticos , Variação Genética , Humanos , Infecções Urinárias/genética
17.
Investig Genet ; 6: 13, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26550467

RESUMO

BACKGROUND: Anthropological and genetic data agree in indicating the African continent as the main place of origin for anatomically modern humans. However, it is unclear whether early modern humans left Africa through a single, major process, dispersing simultaneously over Asia and Europe, or in two main waves, first through the Arab Peninsula into southern Asia and Oceania, and later through a northern route crossing the Levant. RESULTS: Here, we show that accurate genomic estimates of the divergence times between European and African populations are more recent than those between Australo-Melanesia and Africa and incompatible with the effects of a single dispersal. This difference cannot possibly be accounted for by the effects of either hybridization with archaic human forms in Australo-Melanesia or back migration from Europe into Africa. Furthermore, in several populations of Asia we found evidence for relatively recent genetic admixture events, which could have obscured the signatures of the earliest processes. CONCLUSIONS: We conclude that the hypothesis of a single major human dispersal from Africa appears hardly compatible with the observed historical and geographical patterns of genome diversity and that Australo-Melanesian populations seem still to retain a genomic signature of a more ancient divergence from Africa.

18.
Am J Phys Anthropol ; 157(4): 630-40, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26059462

RESUMO

OBJECTIVES: The notion that patterns of linguistic and biological variation may cast light on each other and on population histories dates back to Darwin's times; yet, turning this intuition into a proper research program has met with serious methodological difficulties, especially affecting language comparisons. This article takes advantage of two new tools of comparative linguistics: a refined list of Indo-European cognate words, and a novel method of language comparison estimating linguistic diversity from a universal inventory of grammatical polymorphisms, and hence enabling comparison even across different families. We corroborated the method and used it to compare patterns of linguistic and genomic variation in Europe. MATERIALS AND METHODS: Two sets of linguistic distances, lexical and syntactic, were inferred from these data and compared with measures of geographic and genomic distance through a series of matrix correlation tests. Linguistic and genomic trees were also estimated and compared. A method (Treemix) was used to infer migration episodes after the main population splits. RESULTS: We observed significant correlations between genomic and linguistic diversity, the latter inferred from data on both Indo-European and non-Indo-European languages. Contrary to previous observations, on the European scale, language proved a better predictor of genomic differences than geography. Inferred episodes of genetic admixture following the main population splits found convincing correlates also in the linguistic realm. DISCUSSION: These results pave the ground for previously unfeasible cross-disciplinary analyses at the worldwide scale, encompassing populations of distant language families.


Assuntos
Evolução Biológica , Variação Genética/genética , Genoma/genética , Idioma , Algoritmos , Antropologia Física , Europa (Continente)/epidemiologia , Genética Populacional , Humanos , Modelos Estatísticos , Polimorfismo de Nucleotídeo Único/genética
19.
J Hum Evol ; 82: 88-94, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25805042

RESUMO

In 1993, a fossil hominin skeleton was discovered in the karst caves of Lamalunga, near Altamura, in southern Italy. Despite the fact that this specimen represents one of the most extraordinary hominin specimens ever found in Europe, for the last two decades our knowledge of it has been based purely on the documented on-site observations. Recently, the retrieval from the cave of a fragment of bone (part of the right scapula) allowed the first dating of the individual, the quantitative analysis of a diagnostic morphological feature, and a preliminary paleogenetic characterization of this hominin skeleton from Altamura. Overall, the results concur in indicating that it belongs to the hypodigm of Homo neanderthalensis, with some phenetic peculiarities that appear consistent with a chronology ranging from 172 ± 15 ka to 130.1 ± 1.9 ka. Thus, the skeleton from Altamura represents the most ancient Neanderthal from which endogenous DNA has ever been extracted.


Assuntos
Cavernas , Fósseis , Homem de Neandertal , Paleontologia/métodos , Esqueleto , Animais , Sequência de Bases , DNA/análise , História Antiga , Itália , Dados de Sequência Molecular , Filogenia , Escápula/química , Esqueleto/química
20.
PLoS One ; 10(1): e0116801, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25635682

RESUMO

In the period between 400 to 800 AD, also known as the period of the Barbarian invasions, intense migration is documented in the historical record of Europe. However, little is known about the demographic impact of these historical movements, potentially ranging from negligible to substantial. As a pilot study in a broader project on Medieval Europe, we sampled 102 specimens from 5 burial sites in Northwestern Italy, archaeologically classified as belonging to Lombards or Longobards, a Germanic people ruling over a vast section of the Italian peninsula from 568 to 774. We successfully amplified and typed the mitochondrial hypervariable region I (HVR-I) of 28 individuals. Comparisons of genetic diversity with other ancient populations and haplotype networks did not suggest that these samples are heterogeneous, and hence allowed us to jointly compare them with three isolated contemporary populations, and with a modern sample of a large city, representing a control for the effects of recent immigration. We then generated by serial coalescent simulations 16 millions of genealogies, contrasting a model of genealogical continuity with one in which the contemporary samples are genealogically independent from the medieval sample. Analyses by Approximate Bayesian Computation showed that the latter model fits the data in most cases, with one exception, Trino Vercellese, in which the evidence was compatible with persistence up to the present time of genetic features observed among this early medieval population. We conclude that it is possible, in general, to detect evidence of genealogical ties between medieval and specific modern populations. However, only seldom did mitochondrial DNA data allow us to reject with confidence either model tested, which indicates that broader analyses, based on larger assemblages of samples and genetic markers, are needed to understand in detail the effects of medieval migration.


Assuntos
Migração Humana , Teorema de Bayes , DNA Mitocondrial/genética , Genoma Humano , História Medieval , Humanos , Itália , Modelos Genéticos , Filogenia , Filogeografia , Curva ROC , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA