RESUMO
BACKGROUND: Astrocytoma, the most common type of glioma, can histologically be low or high grade. Treatment recommendations for astrocytic tumors are based on the histopathological and molecular phenotype. For grade 2 astrocytoma, the combination of radiotherapy and adjuvant chemotherapy with procarbazine, lomustine, and vincristine (PCV) is better than radiotherapy alone. Temozolomide (TMZ) is being increasingly recognized as a replacement for PCV in brain tumor therapy, due to the lower myelotoxicity. TMZ is currently a well-established first-line treatment for grade 3 astrocytoma, grade 4 astrocytoma, and glioblastoma and it is also sporadically used for grade 2 astrocytoma. However, TMZ faces multiple challenges such as adverse effects and drug resistance. METHODS: In this study, we compared the cytotoxic effect induced by TMZ and doxorubicin (DOXO), alone and in combination, on a low-grade astrocytoma cell line (AC1B) and a high-grade glioma cell line (GB1B). RESULTS: We found that TMZ and DOXO, each produced a cytotoxic effect in monotherapy. GB1B cell line was more sensitive to the treatment than AC1B cells, at a 7- and 10-day exposure to the DOXO. However, when the duration of the treatment was extended to 14 days, GB1B cells became more resistant to DOXO treatment, compared to AC1B cells. Regarding the treatment with TMZ, GB1B exhibited greater resistance to TMZ compared to AC1B, across all studied intervals and the resistance to treatment of GB1B increased with longer exposure time. However, in combined therapy, the drugs did not exert a synergistic effect on any astrocytic cell line. CONCLUSIONS: The current data suggest that both TMZ and DOXO exhibit efficient therapeutic effects on low- and high-grade glioma cells. However, no synergistic effect was observed for combined therapy.
RESUMO
Cancer and viruses have a long history that has evolved over many decades. Much information about the interplay between viruses and cell proliferation and metabolism has come from the history of clinical cases of patients infected with virus-induced cancer. In addition, information from viruses used to treat some types of cancer is valuable. Now, since the global coronavirus pandemic erupted almost a year ago, the scientific community has invested countless time and resources to slow down the infection rate and diminish the number of casualties produced by this highly infectious pathogen. A large percentage of cancer cases diagnosed are strongly related to dysregulations of the tyrosine kinase receptor (TKR) family and its downstream signaling pathways. As such, many therapeutic agents have been developed to strategically target these structures in order to hinder certain mechanisms pertaining to the phenotypic characteristics of cancer cells such as division, invasion or metastatic potential. Interestingly, several authors have pointed out that a correlation between coronaviruses such as the SARS-CoV-1 and -2 or MERS viruses and dysregulations of signaling pathways activated by TKRs can be established. This information may help to accelerate the repurposing of clinically developed anti-TKR cancer drugs in COVID-19 management. Because the need for treatment is critical, drug repurposing may be an advantageous choice in the search for new and efficient therapeutic compounds. This approach would be advantageous from a financial point of view as well, given that the resources used for research and development would no longer be required and can be potentially redirected towards other key projects. This review aims to provide an overview of how SARS-CoV-2 interacts with different TKRs and their respective downstream signaling pathway and how several therapeutic agents targeted against these receptors can interfere with the viral infection. Additionally, this review aims to identify if SARS-CoV-2 can be repurposed to be a potential viral vector against different cancer types.
Assuntos
Antineoplásicos/farmacologia , Antivirais/farmacologia , COVID-19/metabolismo , Neoplasias/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , SARS-CoV-2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Antineoplásicos/uso terapêutico , Antivirais/uso terapêutico , COVID-19/complicações , Reposicionamento de Medicamentos , Receptores ErbB/metabolismo , Humanos , Coronavírus da Síndrome Respiratória do Oriente Médio/metabolismo , Neoplasias/complicações , Neoplasias/tratamento farmacológico , Neoplasias/virologia , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Transdução de Sinais/genéticaRESUMO
The best known functions of ß-arrestins (ß-arr) are to regulate G protein-coupled receptors (GPCR) signaling through receptor desensitization and internalization. Many reports also suggest that ß-arrs play important role in immune regulation and inflammatory responses, under physiological and pathological conditions. Recent studies have shown that ß-arr 1 silencing halts proliferation and increases temozolomide (TMZ) response in glioblastoma (GBM) cells. The focus of this paper is to analyze the role of ß-arr 1 overexpression in the 18 high grade glioma (HGG) cell line in terms of viability and their response to TMZ treatment. For this reason, the cell line was transfected with ß-arr 1 and the effect was analyzed after 24 h, 48 h and 72 h in terms of proliferation and treatment response. We observed that ß-arr 1 overexpression induced a time and dose dependant inhibition in the HGG cells. Unexpectedly, ß-arr transfection resulted in a very mild increase in TMZ toxicity after 24 h, becoming non-statistically significant at 72 h. In conclusion, we showed that ß-arr 1 overexpression inhibits cell proliferation in the 18 cell line but only has a very modest effect on treatment response with the alkylating agent TMZ.