Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Food Chem Toxicol ; 178: 113935, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37429408

RESUMO

Azo dyes, including Tartrazine, Sunset Yellow, and Carmoisine, are added to foods to provide color, but they have no value with regard to nutrition, food preservation, or health benefits. Because of their availability, affordability, stability, and low cost, and because they provide intense coloration to the product without contributing unwanted flavors, the food industry often prefers to use synthetic azo dyes rather than natural colorants. Food dyes have been tested by regulatory agencies responsible for guaranteeing consumer safety. Nevertheless, the safety of these colorants remains controversial; they have been associated with adverse effects, particularly due to the reduction and cleavage of the azo bond. Here, we review the features, classification, regulation, toxicity, and alternatives to the use of azo dyes in food.


Assuntos
Compostos Azo , Corantes de Alimentos , Compostos Azo/toxicidade , Compostos Azo/análise , Tartrazina/toxicidade , Tartrazina/análise , Corantes/toxicidade , Alimentos , Indústria Alimentícia , Corantes de Alimentos/toxicidade
2.
Adv Colloid Interface Sci ; 311: 102829, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36603300

RESUMO

Nanotechnology has opened a new frontier in recent years, capable of providing new ways of controlling and structuring products with greater market value and offering significant opportunities for the development of innovative applications in food processing, preservation, and packaging. Macroalgae (MAG) are the major photoautotrophic group of living beings known as a potential source of secondary metabolites, namely phenolic compounds, pigments, and polysaccharides. Biosynthesis based on the abilities of MAG as "nanobiofactories" targets the use of algal secondary metabolites as reducing agents to stabilize nanoparticles (NPs). Nowadays, most of the studies are focused on the use of metal (Ag, Au) and metal-oxide (CuO, ZnO) NPs derived from algae. The eco-friendly biosynthesis of metal NPs reduces the cost and production time and increases their biocompatibility, due to the presence of bioactive compounds in MAG, making them suitable for a wide variety of applications. These compounds have been attributed to the antimicrobial and antioxidant properties responsible for their application through innovative technologies such as nanoencapsulation, nanocomposites, or biosensors in the food industry. Nevertheless, toxicity is a key factor that should be considered, so the applicable regulation needs to guarantee the safe use of metal NPs. Consequently, the aim of this review will be to compile the available information on MAG-mediated metal NPs, their biosynthesis, and potential food applications.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Alga Marinha , Óxido de Zinco , Metais , Alimentos , Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA