Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cancer Res ; 76(19): 5822-5831, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27530328

RESUMO

DEPTOR is a 48 kDa protein that binds to mTOR and inhibits this kinase in TORC1 and TORC2 complexes. Overexpression of DEPTOR specifically occurs in a model of multiple myeloma. Its silencing in multiple myeloma cells is sufficient to induce cytotoxicity, suggesting that DEPTOR is a potential therapeutic target. mTORC1 paralysis protects multiple myeloma cells against DEPTOR silencing, implicating mTORC1 in the critical role of DEPTOR in multiple myeloma cell viability. Building on this foundation, we interrogated a small-molecule library for compounds that prevent DEPTOR binding to mTOR in a yeast-two-hybrid assay. One compound was identified that also prevented DEPTOR-mTOR binding in human myeloma cells, with subsequent activation of mTORC1 and mTORC2. In a surface plasmon resonance (SPR) assay, the compound bound to recombinant DEPTOR but not to mTOR. The drug also prevented binding of recombinant DEPTOR to mTOR in the SPR assay. Remarkably, although activating TORC1 and TORC2, the compound induced apoptosis and cell-cycle arrest in multiple myeloma cell lines and prevented outgrowth of human multiple myeloma cells in immunodeficient mice. In vitro cytotoxicity against multiple myeloma cell lines was directly correlated with DEPTOR protein expression and was mediated, in part, by the activation of TORC1 and induction of p21 expression. Additional cytotoxicity was seen against primary multiple myeloma cells, whereas normal hematopoietic colony formation was unaffected. These results further support DEPTOR as a viable therapeutic target in multiple myeloma and suggest an effective strategy of preventing binding of DEPTOR to mTOR. Cancer Res; 76(19); 5822-31. ©2016 AACR.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Mieloma Múltiplo/tratamento farmacológico , Serina-Treonina Quinases TOR/antagonistas & inibidores , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p21/fisiologia , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Mieloma Múltiplo/patologia , Complexos Multiproteicos/fisiologia , Proteínas Proto-Oncogênicas c-bcl-2/fisiologia , Serina-Treonina Quinases TOR/fisiologia
2.
Mol Cancer Res ; 14(4): 397-407, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26869290

RESUMO

UNLABELLED: To assess the role of the serum and glucocorticoid-regulated kinase (SGK) kinase in multiple myeloma, we ectopically expressed wild type or a phosphomimetic version of SGK into multiple myeloma cell lines. These cells were specifically resistant to the ER stress inducers tunicamycin, thapsigargin, and bortezomib. In contrast, there was no alteration of sensitivity to dexamethasone, serum starvation, or mTORC inhibitors. Mining of genomic data from a public database indicated that low baseline SGK expression in multiple myeloma patients correlated with enhanced ability to undergo a complete response to subsequent bortezomib treatment and a longer time to progression and overall survival following treatment. SGK overexpressing multiple myeloma cells were also relatively resistant to bortezomib in a murine xenograft model. Parental/control multiple myeloma cells demonstrated a rapid upregulation of SGK expression and activity (phosphorylation of NDRG-1) during exposure to bortezomib and an SGK inhibitor significantly enhanced bortezomib-induced apoptosis in cell lines and primary multiple myeloma cells. In addition, a multiple myeloma cell line selected for bortezomib resistance demonstrated enhanced SGK expression and SGK activity. Mechanistically, SGK overexpression constrained an ER stress-induced JNK proapoptotic pathway and experiments with a SEK mutant supported the notion that SGK's protection against bortezomib was mediated via its phosphorylation of SEK (MAP2K4) which abated SEK/JNK signaling. These data support a role for SGK inhibitors in the clinical setting for myeloma patients receiving treatment with ER stress inducers like bortezomib. IMPLICATIONS: Enhanced SGK expression and activity in multiple myeloma cells contributes to resistance to ER stress, including bortezomib challenge.


Assuntos
Bortezomib/administração & dosagem , Resistencia a Medicamentos Antineoplásicos , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , Mieloma Múltiplo/tratamento farmacológico , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Apoptose , Bortezomib/farmacologia , Linhagem Celular Tumoral , Estresse do Retículo Endoplasmático , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Tapsigargina/administração & dosagem , Tapsigargina/farmacologia , Tunicamicina/administração & dosagem , Tunicamicina/farmacologia , Regulação para Cima , Ensaios Antitumorais Modelo de Xenoenxerto
3.
PLoS One ; 9(4): e94011, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24714040

RESUMO

Because multiple myeloma (MM) cells are at risk for endoplasmic reticulum (ER) stress, they require a carefully regulated mechanism to promote protein translation of selected transcripts when proliferation is stimulated. MAPK-interacting kinases (MNKs) may provide this mechanism by enhancing cap-dependent translation of a small number of critical transcripts. We, thus, tested whether MNKs played a role in MM responses to the myeloma growth factor interleukin-6 (IL-6). IL-6 activated MNK1 phosphorylation and induced phosphorylation of its substrate, eIF-4E, in MM lines and primary specimens. MNK paralysis, achieved pharmacologically or by shRNA, prevented MM expansion stimulated by IL-6. A phosphodefective eIF-4E mutant also prevented the IL-6 response, supporting the notion that MNK's role was via phosphorylation of eIF-4E. Both pharmacological MNK inhibition and expression of the phosphodefective eIF-4E mutant inhibited MM growth in mice. Although critical for IL-6-induced expansion, eIF-4E phosphorylation had no significant effect on global translation or Ig expression. Deep sequencing of ribosome-protected mRNAs revealed a repertoire of genes involved in metabolic processes and ER stress modulation whose translation was regulated by eIF-4E phosphorylation. These data indicate MM cells exploit the MNK/eIF-4E pathway for selective mRNA translation without enhancing global translation and risking ER stress.


Assuntos
Fator de Iniciação 4E em Eucariotos/metabolismo , Interleucina-6/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mieloma Múltiplo/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Linhagem Celular Tumoral , Estresse do Retículo Endoplasmático , Humanos , Camundongos , Fosforilação , Biossíntese de Proteínas
4.
Genes Cancer ; 5(11-12): 407-19, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25568666

RESUMO

We investigated the mechanism by which gene silencing of the mTOR inhibitor, DEPTOR, induces cytoreductive effects on multiple myeloma (MM) cells. DEPTOR knockdown resulted in anti-MM effects in several MM cell lines. Using an inducible shRNA to silence DEPTOR, 8226 MM cells underwent TORC1 activation, downregulation of AKT/SGK activity, apoptosis, cell cycle arrest and senescence. These latter cytotoxic effects were prevented by TORC1 paralysis (Raptor knockdown) but not by over-expression of AKT activity. In addition, DEPTOR knockdown-induced MM death was not associated with activation of the unfolded protein response, suggesting that enhanced ER stress did not play a role. In contrast, DEPTOR knockdown in 8226 cells induced p21 expression, independent of p53, and p21 knockdown prevented all of the cytotoxic effects following DEPTOR silencing. DEPTOR silencing resulted in p21 upregulation in additional MM cell lines. Furthermore, DEPTOR silencing in a murine xenograft model resulted in anti-MM effects associated with p21 upregulation. DEPTOR knockdown also resulted in a decreased expression of p21-targeting miRNAs and transfection of miRNA mimics prevented p21 upregulation and apoptosis following DEPTOR silencing. Use of a shRNA-resistant DEPTOR construct ruled out off-target effects of the shRNA. These results indicate that DEPTOR regulates growth and survival of MM cells via a TORC1/p21 pathway and suggest an involvement of p21-targeted miRNAs.

5.
Mol Cancer Ther ; 12(7): 1310-21, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23585020

RESUMO

To investigate the mechanism by which 5-aminoimidazole-4-carboxamide-1-ß-riboside (AICAr) induces apoptosis in multiple myeloma cells, we conducted an unbiased metabolomics screen. AICAr had selective effects on nucleotide metabolism, resulting in an increase in purine metabolites and a decrease in pyrimidine metabolites. The most striking abnormality was a 26-fold increase in orotate associated with a decrease in uridine monophosphate (UMP) levels, indicating an inhibition of UMP synthetase (UMPS), the last enzyme in the de novo pyrimidine biosynthetic pathway, which produces UMP from orotate and 5-phosphoribosyl-α-pyrophosphate (PRPP). As all pyrimidine nucleotides can be synthesized from UMP, this suggested that the decrease in UMP would lead to pyrimidine starvation as a possible cause of AICAr-induced apoptosis. Exogenous pyrimidines uridine, cytidine, and thymidine, but not purines adenosine or guanosine, rescued multiple myeloma cells from AICAr-induced apoptosis, supporting this notion. In contrast, exogenous uridine had no protective effect on apoptosis resulting from bortezomib, melphalan, or metformin. Rescue resulting from thymidine add-back indicated apoptosis was induced by limiting DNA synthesis rather than RNA synthesis. DNA replicative stress was identified by associated H2A.X phosphorylation in AICAr-treated cells, which was also prevented by uridine add-back. Although phosphorylation of AICAr by adenosine kinase was required to induce multiple myeloma cell death, apoptosis was not associated with AMP-activated kinase activation or mTORC1 inhibition. A possible explanation for inhibition of UMP synthase activity by AICAr was a depression in cellular levels of PRPP, a substrate of UMP synthase. These data identify pyrimidine biosynthesis as a potential molecular target for future therapeutics in multiple myeloma cells.


Assuntos
Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Antineoplásicos/farmacologia , Mieloma Múltiplo/metabolismo , Pirimidinas/metabolismo , Ribonucleosídeos/farmacologia , Apoptose/efeitos dos fármacos , Humanos , Metabolômica/métodos , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Pirimidinas/biossíntese
6.
Mol Ecol Resour ; 9(3): 966-9, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-21564807

RESUMO

We developed 15 new polymorphic microsatellites for the plethodontid salamander Ensatina eschscholtzii. Loci were isolated from a genomic library from Ensatina eschscholtzii xanthoptica enriched for (AAAG)(n) repetitive elements. The number of alleles per locus ranged from 4 to 20 (mean 9) in the sampled population. Observed heterozygosity ranged from 0.37 to 1. None of the loci deviated from Hardy-Weinberg equilibrium or showed significant linkage disequilibrium after a Bonferroni correction for multiple comparisons. All loci amplified in the six other subspecies of the Ensatina eschscholtzii complex. These new markers will prove useful in measuring gene flow and population structure as well as patterns of mating and sperm use in Ensatina.

7.
Nature ; 438(7069): 803-19, 2005 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-16341006

RESUMO

Here we report a high-quality draft genome sequence of the domestic dog (Canis familiaris), together with a dense map of single nucleotide polymorphisms (SNPs) across breeds. The dog is of particular interest because it provides important evolutionary information and because existing breeds show great phenotypic diversity for morphological, physiological and behavioural traits. We use sequence comparison with the primate and rodent lineages to shed light on the structure and evolution of genomes and genes. Notably, the majority of the most highly conserved non-coding sequences in mammalian genomes are clustered near a small subset of genes with important roles in development. Analysis of SNPs reveals long-range haplotypes across the entire dog genome, and defines the nature of genetic diversity within and across breeds. The current SNP map now makes it possible for genome-wide association studies to identify genes responsible for diseases and traits, with important consequences for human and companion animal health.


Assuntos
Cães/genética , Evolução Molecular , Genoma/genética , Genômica , Haplótipos/genética , Animais , Sequência Conservada/genética , Doenças do Cão/genética , Cães/classificação , Feminino , Humanos , Hibridização Genética , Masculino , Camundongos , Mutagênese/genética , Polimorfismo de Nucleotídeo Único/genética , Ratos , Elementos Nucleotídeos Curtos e Dispersos/genética , Sintenia/genética
8.
Mol Phylogenet Evol ; 37(3): 815-31, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16213754

RESUMO

We have reconstructed the phylogenetic relationships of 23 species in the dog family, Canidae, using DNA sequence data from six nuclear loci. Individual gene trees were generated with maximum parsimony (MP) and maximum likelihood (ML) analysis. In general, these individual gene trees were not well resolved, but several identical groupings were supported by more than one locus. Phylogenetic analysis with a data set combining the six nuclear loci using MP, ML, and Bayesian approaches produced a more resolved tree that agreed with previously published mitochondrial trees in finding three well-defined clades, including the red fox-like canids, the South American foxes, and the wolf-like canids. In addition, the nuclear data set provides novel indel support for several previously inferred clades. Differences between trees derived from the nuclear data and those from the mitochondrial data include the grouping of the bush dog and maned wolf into a clade with the South American foxes, the grouping of the side-striped jackal (Canis adustus) and black-backed jackal (Canis mesomelas) and the grouping of the bat-eared fox (Otocyon megalotis) with the raccoon dog (Nycteruetes procyonoides). We also analyzed the combined nuclear+mitochondrial tree. Many nodes that were strongly supported in the nuclear tree or the mitochondrial tree remained strongly supported in the nuclear+mitochondrial tree. Relationships within the clades containing the red fox-like canids and South American canids are well resolved, whereas the relationships among the wolf-like canids remain largely undetermined. The lack of resolution within the wolf-like canids may be due to their recent divergence and insufficient time for the accumulation of phylogenetically informative signal.


Assuntos
Canidae/genética , Filogenia , Animais , Sequência de Bases , Teorema de Bayes , Canidae/classificação , Sistema Enzimático do Citocromo P-450/genética , Primers do DNA , Funções Verossimilhança , Modelos Genéticos , Dados de Sequência Molecular , Proteínas Proto-Oncogênicas c-fes/genética , RNA de Transferência Aminoácido-Específico/genética , Receptores Nicotínicos/genética , Receptores da Somatotropina/genética , Análise de Sequência de DNA , Vitronectina/genética
9.
Mol Biol Evol ; 22(2): 347-59, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15496554

RESUMO

In an effort to identify rapidly evolving nuclear sequences useful for phylogenetic analyses of closely related species, we isolated two genes transcribed by RNA polymerase III (pol III), the selenocysteine tRNA gene (TRSP) and an RNase P RNA (RPPH1) gene from the domestic dog (Canis familiaris). We focus on genes transcribed by pol III because their coding regions are small (generally 100-300 base pairs [bp]) and their essential promoter elements are located within a couple of hundred bps upstream of the coding region. Therefore, we predicted that regions flanking the coding region and outside of the promoter elements would be free of constraint and would evolve rapidly. We amplified TRSP from 23 canids and RPPH1 from 12 canids and analyzed the molecular evolution of these genes and their utility as phylogenetic markers for resolving relationships among species in Canidae. We compared the rate of evolution of the gene-flanking regions to other noncoding regions of nuclear DNA (introns) and to the mitochondrial encoded COII gene. Alignment of TRSP from 23 canids revealed that regions directly adjacent to the coding region display high sequence variability. We discuss this pattern in terms of functional mechanisms of transcription. Although the flanking regions evolve no faster than introns, both genes were found to be useful phylogenetic markers, in part, because of the synapomorphic indels found in the flanking regions. Gene trees generated from the TRSP and RPPH1 loci were generally in agreement with the published mtDNA phylogeny and are the first phylogeny of Canidae based on nuclear sequences.


Assuntos
Canidae/classificação , Evolução Molecular , RNA de Transferência Aminoácido-Específico/genética , Ribonuclease P/genética , Animais , Canidae/genética , Cães , Filogenia , RNA Polimerase III/genética , RNA Polimerase III/fisiologia , RNA de Transferência Aminoácido-Específico/classificação , Ribonuclease P/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA