Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 2503, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33947859

RESUMO

Habitat is one of the most important factors shaping organismal morphology, but it may vary across life history stages. Ontogenetic shifts in ecology may introduce antagonistic selection that constrains adult phenotype, particularly with ecologically distinct developmental phases such as the free-living, feeding larval stage of many frogs (Lissamphibia: Anura). We test the relative influences of developmental and ecological factors on the diversification of adult skull morphology with a detailed analysis of 15 individual cranial regions across 173 anuran species, representing every extant family. Skull size, adult microhabitat, larval feeding, and ossification timing are all significant factors shaping aspects of cranial evolution in frogs, with late-ossifying elements showing the greatest disparity and fastest evolutionary rates. Size and microhabitat show the strongest effects on cranial shape, and we identify a "large size-wide skull" pattern of anuran, and possibly amphibian, evolutionary allometry. Fossorial and aquatic microhabitats occupy distinct regions of morphospace and display fast evolution and high disparity. Taxa with and without feeding larvae do not notably differ in cranial morphology. However, loss of an actively feeding larval stage is associated with higher evolutionary rates and disparity, suggesting that functional pressures experienced earlier in ontogeny significantly impact adult morphological evolution.


Assuntos
Ecossistema , Comportamento Alimentar , Larva/crescimento & desenvolvimento , Crânio/anatomia & histologia , Animais , Anuros , Evolução Biológica , Larva/anatomia & histologia , Larva/metabolismo , Osteogênese/fisiologia , Filogenia , Análise de Componente Principal , Crânio/crescimento & desenvolvimento
2.
Nat Ecol Evol ; 4(8): 1129-1140, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32572219

RESUMO

Metamorphosis is widespread across the animal kingdom and induces fundamental changes in the morphology, habitat and resources used by an organism during its lifetime. Metamorphic species are likely to experience more dynamic selective pressures through ontogeny compared with species with single-phase life cycles, which may drive divergent evolutionary dynamics. Here, we reconstruct the cranial evolution of the salamander using geometric morphometric data from 148 species spanning the order's full phylogenetic, developmental and ecological diversity. We demonstrate that life cycle influences cranial shape diversity and rate of evolution. Shifts in the rate of cranial evolution are consistently associated with transitions from biphasic to either direct-developing or paedomorphic life cycle strategies. Direct-developers exhibit the slowest rates of evolution and the lowest disparity, and paedomorphic species the highest. Species undergoing complete metamorphosis (biphasic and direct-developing) exhibit greater cranial modularity (evolutionary independence among regions) than do paedomorphic species, which undergo differential metamorphosis. Biphasic and direct-developing species also display elevated disparity relative to the evolutionary rate for bones associated with feeding, whereas this is not the case for paedomorphic species. Metamorphosis has profoundly influenced salamander cranial evolution, requiring greater autonomy of cranial elements and facilitating the rapid evolution of regions that are remodelled through ontogeny. Rather than compounding functional constraints on variation, metamorphosis seems to have promoted the morphological evolution of salamanders over 180 million years, which may explain the ubiquity of this complex life cycle strategy across disparate organisms.


Assuntos
Metamorfose Biológica , Urodelos , Animais , Estágios do Ciclo de Vida , Filogenia , Crânio , Urodelos/genética
3.
Evolution ; 74(6): 1200-1215, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32346857

RESUMO

Evolutionary integration (covariation) of traits has long fascinated biologists because of its potential to elucidate factors that have shaped morphological evolution. Studies of tetrapod crania have identified patterns of evolutionary integration that reflect functional or developmental interactions among traits, but no studies to date have sampled widely across the species-rich lissamphibian order Anura (frogs). Frogs exhibit a vast range of cranial morphologies, life history strategies, and ecologies. Here, using high-density morphometrics we capture cranial morphology for 172 anuran species, sampling every extant family. We quantify the pattern of evolutionary modularity in the frog skull and compare patterns in taxa with different life history modes. Evolutionary changes across the anuran cranium are highly modular, with a well-integrated "suspensorium" involved in feeding. This pattern is strikingly similar to that identified for caecilian and salamander crania, suggesting replication of patterns of evolutionary integration across Lissamphibia. Surprisingly, possession of a feeding larval stage has no notable influence on cranial integration across frogs. However, late-ossifying bones exhibit higher integration than early-ossifying bones. Finally, anuran cranial modules show diverse morphological disparities, supporting the hypothesis that modular variation allows mosaic evolution of the cranium, but we find no consistent relationship between degree of within-module integration and disparity.


Assuntos
Anuros/anatomia & histologia , Evolução Biológica , Crânio/anatomia & histologia , Animais , Biometria , Osteogênese
4.
Integr Comp Biol ; 59(3): 669-683, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31243431

RESUMO

The field of comparative morphology has entered a new phase with the rapid generation of high-resolution three-dimensional (3D) data. With freely available 3D data of thousands of species, methods for quantifying morphology that harness this rich phenotypic information are quickly emerging. Among these techniques, high-density geometric morphometric approaches provide a powerful and versatile framework to robustly characterize shape and phenotypic integration, the covariances among morphological traits. These methods are particularly useful for analyses of complex structures and across disparate taxa, which may share few landmarks of unambiguous homology. However, high-density geometric morphometrics also brings challenges, for example, with statistical, but not biological, covariances imposed by placement and sliding of semilandmarks and registration methods such as Procrustes superimposition. Here, we present simulations and case studies of high-density datasets for squamates, birds, and caecilians that exemplify the promise and challenges of high-dimensional analyses of phenotypic integration and modularity. We assess: (1) the relative merits of "big" high-density geometric morphometrics data over traditional shape data; (2) the impact of Procrustes superimposition on analyses of integration and modularity; and (3) differences in patterns of integration between analyses using high-density geometric morphometrics and those using discrete landmarks. We demonstrate that for many skull regions, 20-30 landmarks and/or semilandmarks are needed to accurately characterize their shape variation, and landmark-only analyses do a particularly poor job of capturing shape variation in vault and rostrum bones. Procrustes superimposition can mask modularity, especially when landmarks covary in parallel directions, but this effect decreases with more biologically complex covariance patterns. The directional effect of landmark variation on the position of the centroid affects recovery of covariance patterns more than landmark number does. Landmark-only and landmark-plus-sliding-semilandmark analyses of integration are generally congruent in overall pattern of integration, but landmark-only analyses tend to show higher integration between adjacent bones, especially when landmarks placed on the sutures between bones introduces a boundary bias. Allometry may be a stronger influence on patterns of integration in landmark-only analyses, which show stronger integration prior to removal of allometric effects compared to analyses including semilandmarks. High-density geometric morphometrics has its challenges and drawbacks, but our analyses of simulated and empirical datasets demonstrate that these potential issues are unlikely to obscure genuine biological signal. Rather, high-density geometric morphometric data exceed traditional landmark-based methods in characterization of morphology and allow more nuanced comparisons across disparate taxa. Combined with the rapid increases in 3D data availability, high-density morphometric approaches have immense potential to propel a new class of studies of comparative morphology and phenotypic integration.


Assuntos
Anfíbios/anatomia & histologia , Evolução Biológica , Aves/anatomia & histologia , Répteis/anatomia & histologia , Crânio/anatomia & histologia , Pontos de Referência Anatômicos/anatomia & histologia , Animais , Modelos Anatômicos , Fenótipo
5.
BMC Evol Biol ; 19(1): 30, 2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30669965

RESUMO

BACKGROUND: Caecilians (Gymnophiona) are the least speciose extant lissamphibian order, yet living forms capture approximately 250 million years of evolution since their earliest divergences. This long history is reflected in the broad range of skull morphologies exhibited by this largely fossorial, but developmentally diverse, clade. However, this diversity of form makes quantification of caecilian cranial morphology challenging, with highly variable presence or absence of many structures. Consequently, few studies have examined morphological evolution across caecilians. This extensive variation also raises the question of degree of conservation of cranial modules (semi-autonomous subsets of highly-integrated traits) within this clade, allowing us to assess the importance of modular organisation in shaping morphological evolution. We used an intensive surface geometric morphometric approach to quantify cranial morphological variation across all 32 extant caecilian genera. We defined 16 cranial regions using 53 landmarks and 687 curve and 729 surface sliding semilandmarks. With these unprecedented high-dimensional data, we analysed cranial shape and modularity across caecilians assessing phylogenetic, allometric and ecological influences on cranial evolution, as well as investigating the relationships among integration, evolutionary rate, and morphological disparity. RESULTS: We found highest support for a ten-module model, with greater integration of the posterior skull. Phylogenetic signal was significant (Kmult = 0.87, p < 0.01), but stronger in anterior modules, while allometric influences were also significant (R2 = 0.16, p < 0.01), but stronger posteriorly. Reproductive strategy and degree of fossoriality were small but significant influences on cranial morphology (R2 = 0.03-0.05), after phylogenetic (p < 0.03) and multiple-test (p < 0.05) corrections. The quadrate-squamosal 'cheek' module was the fastest evolving module, perhaps due to its pivotal role in the unique dual jaw-closing mechanism of caecilians. Highly integrated modules exhibited both high and low disparities, and no relationship was evident between integration and evolutionary rate. CONCLUSIONS: Our high-dimensional approach robustly characterises caecilian cranial evolution and demonstrates that caecilian crania are highly modular and that cranial modules are shaped by differential phylogenetic, allometric, and ecological effects. More broadly, and in contrast to recent studies, this work suggests that there is no simple relationship between integration and evolutionary rate or disparity.


Assuntos
Anfíbios/anatomia & histologia , Evolução Biológica , Crânio/anatomia & histologia , Pontos de Referência Anatômicos , Animais , Modelos Anatômicos , Fenótipo , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA