Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(8): 4702-4722, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38572746

RESUMO

The SERF family of proteins were originally discovered for their ability to accelerate amyloid formation. Znf706 is an uncharacterized protein whose N-terminus is homologous to SERF proteins. We show here that human Znf706 can promote protein aggregation and amyloid formation. Unexpectedly, Znf706 specifically interacts with stable, non-canonical nucleic acid structures known as G-quadruplexes. G-quadruplexes can affect gene regulation and suppress protein aggregation; however, it is unknown if and how these two activities are linked. We find Znf706 binds preferentially to parallel G-quadruplexes with low micromolar affinity, primarily using its N-terminus, and upon interaction, its dynamics are constrained. G-quadruplex binding suppresses Znf706's ability to promote protein aggregation. Znf706 in conjunction with G-quadruplexes therefore may play a role in regulating protein folding. RNAseq analysis shows that Znf706 depletion specifically impacts the mRNA abundance of genes that are predicted to contain high G-quadruplex density. Our studies give insight into how proteins and G-quadruplexes interact, and how these interactions affect both partners and lead to the modulation of protein aggregation and cellular mRNA levels. These observations suggest that the SERF family of proteins, in conjunction with G-quadruplexes, may have a broader role in regulating protein folding and gene expression than previously appreciated.


Assuntos
Proteínas de Ligação a DNA , Quadruplex G , Agregados Proteicos , Humanos , Amiloide/metabolismo , Amiloide/química , Amiloide/genética , Transição de Fase , Ligação Proteica , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/química , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo
2.
Biomol NMR Assign ; 18(1): 51-57, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38466543

RESUMO

Human small EDRK-rich factor protein SERF2 is a cellular driver of protein amyloid formation, a process that has been linked to neurodegenerative diseases including Alzheimer's and Parkinson's disease. SERF2 is a 59 amino acid protein, highly charged, and well conserved whose structure and physiological function is unclear. SERF family proteins including human SERF2 have shown a tendency to form fuzzy complexes with misfolded proteins such as α-Synuclein which has been linked to Parkinson's disease. SERF family proteins have been recently identified to bind nucleic acids, but the binding mechanism(s) remain enigmatic. Here, using multidimensional solution NMR, we report the 1H, 15N, and 13C chemical shift assignments (~ 86% of backbone resonance assignments) for human SERF2. TALOS-N predicted secondary structure of SERF2 showed three very short helices (3-4 residues long) in the N-terminal region of the protein and a long helix in the C-terminal region spanning residues 37-46 which is consistent with the helical content indicated by circular dichroism spectroscopy. Paramagnetic relaxation enhancement NMR analysis revealed that a short C-terminal region E53-K55 is in the proximity of the N-terminus. Having the backbone assignment of SERF2 allowed us to probe its interaction with α-Synuclein and to identify the residues in SERF2 binding interfaces that likely promote α-Synuclein aggregation.


Assuntos
Ressonância Magnética Nuclear Biomolecular , Humanos , Sequência de Aminoácidos , Isótopos de Nitrogênio , Estrutura Secundária de Proteína
3.
bioRxiv ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-37790366

RESUMO

The SERF family of proteins were originally discovered for their ability to accelerate amyloid formation. Znf706 is an uncharacterized protein whose N-terminus is homologous to SERF proteins. We show here that human Znf706 can promote protein aggregation and amyloid formation. Unexpectedly, Znf706 specifically interacts with stable, non-canonical nucleic acid structures known as G-quadruplexes. G-quadruplexes can affect gene regulation and suppress protein aggregation; however, it is unknown if and how these two activities are linked. We find Znf706 binds preferentially to parallel G-quadruplexes with low micromolar affinity, primarily using its N-terminus, and upon interaction, its dynamics are constrained. G-quadruplex binding suppresses Znf706's ability to promote protein aggregation. Znf706 in conjunction with G-quadruplexes therefore may play a role in regulating protein folding. RNAseq analysis shows that Znf706 depletion specifically impacts the mRNA abundance of genes that are predicted to contain high G-quadruplex density. Our studies give insight into how proteins and G-quadruplexes interact, and how these interactions affect both partners and lead to the modulation of protein aggregation and cellular mRNA levels. These observations suggest that the SERF family of proteins, in conjunction with G-quadruplexes, may have a broader role in regulating protein folding and gene expression than previously appreciated.

4.
Nat Chem Biol ; 19(11): 1406-1414, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37770699

RESUMO

The flavoenzyme nicotine oxidoreductase (NicA2) is a promising injectable treatment to aid in the cessation of smoking, a behavior responsible for one in ten deaths worldwide. NicA2 acts by degrading nicotine in the bloodstream before it reaches the brain. Clinical use of NicA2 is limited by its poor catalytic activity in the absence of its natural electron acceptor CycN. Without CycN, NicA2 is instead oxidized slowly by dioxygen (O2), necessitating unfeasibly large doses in a therapeutic setting. Here, we report a genetic selection strategy that directly links CycN-independent activity of NicA2 to growth of Pseudomonas putida S16. This selection enabled us to evolve NicA2 variants with substantial improvement in their rate of oxidation by O2. The encoded mutations cluster around a putative O2 tunnel, increasing flexibility and accessibility to O2 in this region. These mutations further confer desirable clinical properties. A variant form of NicA2 is tenfold more effective than the wild type at degrading nicotine in the bloodstream of rats.


Assuntos
Nicotina , Pseudomonas putida , Ratos , Animais , Oxigênio , Oxirredutases/metabolismo , Oxirredução
5.
Macromol Biosci ; 23(8): e2200528, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36971346

RESUMO

The immobilization of enzymes on solid supports is an important challenge in biotechnology and biomedicine. In contrast to other methods, enzyme deposition in polymer brushes offers the benefit of high protein loading that preserves enzymatic activity in part due to the hydrated 3D environment that is available within the brush structure. The authors equipped planar and colloidal silica surfaces with poly(2-(diethylamino)ethyl methacrylate)-based brushes to immobilize Thermoplasma acidophilum histidine ammonia lyase, and analyzed the amount and activity of the immobilized enzyme. The poly(2-(diethylamino)ethyl methacrylate) brushes are attached to the solid silica supports either via a "grafting-to" or a "grafting-from" method. It is found that the grafting-from method results in higher amounts of deposited polymer and, consequently, higher amounts of Thermoplasma acidophilum histidine ammonia lyase. All polymer brush-modified surfaces show preserved catalytic activity of the deposited Thermoplasma acidophilum histidine ammonia lyase. However, immobilizing the enzyme in polymer brushes using the grafting-from method resulted in twice the enzymatic activity from the grafting-to approach, illustrating a successful enzyme deposition on a solid support.


Assuntos
Histidina Amônia-Liase , Polímeros , Polímeros/química , Metacrilatos/química , Dióxido de Silício
6.
FEBS J ; 290(17): 4150-4162, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-35694898

RESUMO

Amyloid formation is a misfolding process that has been linked to age-related diseases, including Alzheimer's and Huntington's. Understanding how cellular factors affect this process in vivo is vital in realizing the dream of controlling this insidious process that robs so many people of their humanity. SERF (small EDRK-rich factor) was initially isolated as a factor that accelerated polyglutamine amyloid formation in a C. elegans model. SERF knockouts inhibit amyloid formation of a number of proteins that include huntingtin, α-synuclein and ß-amyloid which are associated with Huntington's, Parkinson's and Alzheimer's disease, respectively, and purified SERF protein speeds their amyloid formation in vitro. SERF proteins are highly conserved, highly charged and conformationally dynamic proteins that form a fuzzy complex with amyloid precursors. They appear to act by specifically accelerating the primary step of amyloid nucleation. Brain-specific SERF knockout mice, though viable, appear to be more prone to deposition of amyloids, and show modified fibril morphology. Whole-body knockouts are perinatally lethal due to an apparently unrelated developmental issue. Recently, it was found that SERF binds RNA and is localized to nucleic acid-rich membraneless compartments. SERF-related sequences are commonly found fused to zinc finger sequences. These results point towards a nucleic acid-binding function. How this function relates to their ability to accelerate amyloid formation is currently obscure. In this review, we discuss the possible biological functions of SERF family proteins in the context of their structural fuzziness, modulation of amyloid pathway, nucleic acid binding and their fusion to folded proteins.


Assuntos
Doença de Alzheimer , Ácidos Nucleicos , Camundongos , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Amiloide/química , Peptídeos beta-Amiloides/metabolismo
7.
Cell ; 185(25): 4679-4681, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36493750

RESUMO

Chaperones are important for protein folding, but visualizing this process has proven to be exceptionally difficult. In this issue of Cell, Frydman and colleagues have succeeded in watching tubulin being folded by its chaperonin TRiC at near-atomic resolution.


Assuntos
Chaperonina com TCP-1 , Dobramento de Proteína , Tubulina (Proteína) , Chaperonina com TCP-1/metabolismo , Tubulina (Proteína)/metabolismo
8.
Mater Adv ; 3(8): 3649-3662, 2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-36238657

RESUMO

Extremophile enzymes are useful in biotechnology and biomedicine due to their abilities to withstand harsh environments. The abilities of histidine ammonia lyases from different extremophiles to preserve their catalytic activities after exposure to acid were assessed. Thermoplasma acidophilum histidine ammonia lyase was identified as an enzyme with a promising catalytic profile following acid treatment. The fusion of this enzyme with the maltose-binding protein or co-incubation with the chaperone HdeA further helped Thermoplasma acidophilum histidine ammonia lyase to withstand acid treatments down to pH 2.8. The assembly of a microreactor by encapsulation of MBP-Thermoplasma acidophilum histidine ammonia lyase into a photocrosslinked poly(vinyl alcohol) hydrogel allowed the enzyme to recover over 50% of its enzymatic activity following exposure to simulated gastric and intestinal fluids. Our results show that using engineered proteins obtained from extremophiles in combination with polymer-based encapsulation can advance the oral formulations of biologicals.

9.
J Biol Chem ; 298(8): 102251, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35835223

RESUMO

The soil-dwelling bacterium Pseudomonas putida S16 can survive on nicotine as its sole carbon and nitrogen source. The enzymes nicotine oxidoreductase (NicA2) and pseudooxynicotine amine oxidase (Pnao), both members of the flavin-containing amine oxidase family, catalyze the first two steps in the nicotine catabolism pathway. Our laboratory has previously shown that, contrary to other members of its enzyme family, NicA2 is actually a dehydrogenase that uses a cytochrome c protein (CycN) as its electron acceptor. The natural electron acceptor for Pnao is unknown; however, within the P. putida S16 genome, pnao forms an operon with cycN and nicA2, leading us to hypothesize that Pnao may also be a dehydrogenase that uses CycN as its electron acceptor. Here we characterized the kinetic properties of Pnao and show that Pnao is poorly oxidized by O2, but can be rapidly oxidized by CycN, indicating that Pnao indeed acts as a dehydrogenase that uses CycN as its oxidant. Comparing steady-state kinetics with transient kinetic experiments revealed that product release primarily limits turnover by Pnao. We also resolved the crystal structure of Pnao at 2.60 Å, which shows that Pnao has a similar structural fold as NicA2. Furthermore, rigid-body docking of the structure of CycN with Pnao and NicA2 identified a potential conserved binding site for CycN on these two enzymes. Taken together, our results demonstrate that although Pnao and NicA2 show a high degree of similarity to flavin containing amine oxidases that use dioxygen directly, both enzymes are actually dehydrogenases.


Assuntos
Proteínas de Bactérias , Oxirredutases , Pseudomonas putida , Proteínas de Bactérias/metabolismo , Butanonas , Citocromos c/metabolismo , Flavinas/metabolismo , Cinética , Monoaminoxidase/metabolismo , Nicotina/análogos & derivados , Nicotina/química , Oxirredutases/metabolismo , Pseudomonas putida/enzimologia
10.
Nat Commun ; 13(1): 4126, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35840586

RESUMO

ATP-independent chaperones like trigger factor are generally assumed to play passive roles in protein folding by acting as holding chaperones. Here we show that trigger factor plays a more active role. Consistent with a role as an aggregation inhibiting chaperone, we find that trigger factor rapidly binds to partially folded glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and prevents it from non-productive self-association by shielding oligomeric interfaces. In the traditional view of holding chaperone action, trigger factor would then be expected to transfer its client to a chaperone foldase system for complete folding. Unexpectedly, we noticed that GAPDH folds into a monomeric but otherwise rather native-like intermediate state while trigger factor-bound. Upon release from trigger factor, the mostly folded monomeric GAPDH rapidly self-associates into its native tetramer and acquires enzymatic activity without needing additional folding factors. The mechanism we propose here for trigger factor bridges the holding and folding activities of chaperone function.


Assuntos
Proteínas de Escherichia coli , Proteínas de Escherichia coli/metabolismo , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Humanos , Chaperonas Moleculares/metabolismo , Dobramento de Proteína
11.
Annu Rev Biophys ; 51: 409-429, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35167761

RESUMO

The folding of proteins into their native structure is crucial for the functioning of all biological processes. Molecular chaperones are guardians of the proteome that assist in protein folding and prevent the accumulation of aberrant protein conformations that can lead to proteotoxicity. ATP-independent chaperones do not require ATP to regulate their functional cycle. Although these chaperones have been traditionally regarded as passive holdases that merely prevent aggregation, recent work has shown that they can directly affect the folding energy landscape by tuning their affinity to various folding states of the client. This review focuses on emerging paradigms in the mechanism of action of ATP-independent chaperones and on the various modes of regulating client binding and release.


Assuntos
Chaperonas Moleculares , Dobramento de Proteína , Trifosfato de Adenosina , Humanos , Chaperonas Moleculares/química , Conformação Proteica
12.
Sci Adv ; 7(52): eabk0233, 2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-34936433

RESUMO

Heterochromatin is most often associated with eukaryotic organisms. Yet, bacteria also contain areas with densely protein-occupied chromatin that appear to silence gene expression. One nucleoid-associated silencing factor is the conserved protein Hfq. Although seemingly nonspecific in its DNA binding properties, Hfq is strongly enriched at AT-rich DNA regions, characteristic of prophages and mobile genetic elements. Here, we demonstrate that polyphosphate (polyP), an ancient and highly conserved polyanion, is essential for the site-specific DNA binding properties of Hfq in bacteria. Absence of polyP markedly alters the DNA binding profile of Hfq, causes unsolicited prophage and transposon mobilization, and increases mutagenesis rates and DNA damage­induced cell death. In vitro reconstitution of the system revealed that Hfq and polyP interact with AT-rich DNA sequences and form phase-separated condensates, a process that is mediated by the intrinsically disordered C-terminal extensions of Hfq. We propose that polyP serves as a newly identified driver of heterochromatin formation in bacteria.

14.
Nat Commun ; 12(1): 851, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33558474

RESUMO

ATP-independent chaperones are usually considered to be holdases that rapidly bind to non-native states of substrate proteins and prevent their aggregation. These chaperones are thought to release their substrate proteins prior to their folding. Spy is an ATP-independent chaperone that acts as an aggregation inhibiting holdase but does so by allowing its substrate proteins to fold while they remain continuously chaperone bound, thus acting as a foldase as well. The attributes that allow such dual chaperoning behavior are unclear. Here, we used the topologically complex protein apoflavodoxin to show that the outcome of Spy's action is substrate specific and depends on its relative affinity for different folding states. Tighter binding of Spy to partially unfolded states of apoflavodoxin limits the possibility of folding while bound, converting Spy to a holdase chaperone. Our results highlight the central role of the substrate in determining the mechanism of chaperone action.


Assuntos
Trifosfato de Adenosina/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas Periplásmicas/metabolismo , Anabaena/metabolismo , Apoproteínas/química , Apoproteínas/metabolismo , Azotobacter/metabolismo , Escherichia coli/metabolismo , Flavodoxina/química , Flavodoxina/metabolismo , Cinética , Espectroscopia de Ressonância Magnética , Conformação Molecular , Proteínas Mutantes/metabolismo , Proteínas Periplásmicas/química , Ligação Proteica , Dobramento de Proteína , Especificidade por Substrato
15.
Nat Chem Biol ; 17(3): 344-350, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33432238

RESUMO

Nicotine oxidoreductase (NicA2), a member of the flavin-containing amine oxidase family, is of medical relevance as it shows potential as a therapeutic to aid cessation of smoking due to its ability to oxidize nicotine into a non-psychoactive metabolite. However, the use of NicA2 in this capacity is stymied by its dismal O2-dependent activity. Unlike other enzymes in the amine oxidase family, NicA2 reacts very slowly with O2, severely limiting its nicotine-degrading activity. Instead of using O2 as an oxidant, we discovered that NicA2 donates electrons to a cytochrome c, which means that NicA2 is actually a dehydrogenase. This is surprising, as enzymes of the flavin-containing amine oxidase family were invariably thought to use O2 as an electron acceptor. Our findings establish new perspectives for engineering this potentially useful therapeutic and prompt a reconsideration of the term 'oxidase' in referring to members of the flavin-containing amine 'oxidase' family.


Assuntos
Proteínas de Bactérias/química , Citocromos c/química , Flavina-Adenina Dinucleotídeo/química , Nicotina/química , Oxirredutases/química , Pseudomonas putida/química , Alcaloides/química , Alcaloides/metabolismo , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Biotransformação , Bovinos , Clonagem Molecular , Citocromos c/genética , Citocromos c/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Cinética , Modelos Moleculares , Nicotina/metabolismo , Oxirredução , Oxirredutases/genética , Oxirredutases/metabolismo , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Pseudomonas putida/enzimologia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia Estrutural de Proteína , Especificidade por Substrato
16.
J Biol Chem ; 295(42): 14488-14500, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-32817055

RESUMO

Chaperones are essential components of the protein homeostasis network. There is a growing interest in optimizing chaperone function, but exactly how to achieve this aim is unclear. Here, using a model chaperone, the bacterial protein Spy, we demonstrate that substitutions that alter the electrostatic potential of Spy's concave, client-binding surface enhance Spy's anti-aggregation activity. We show that this strategy is more efficient than one that enhances the hydrophobicity of Spy's surface. Our findings thus challenge the traditional notion that hydrophobic interactions are the major driving forces that guide chaperone-substrate binding. Kinetic data revealed that both charge- and hydrophobicity-enhanced Spy variants release clients more slowly, resulting in a greater "holdase" activity. However, increasing short-range hydrophobic interactions deleteriously affected Spy's ability to capture substrates, thus reducing its in vitro chaperone activity toward fast-aggregating substrates. Our strategy in chaperone surface engineering therefore sought to fine-tune the different molecular forces involved in chaperone-substrate interactions rather than focusing on enhancing hydrophobic interactions. These results improve our understanding of the mechanistic basis of chaperone-client interactions and illustrate how protein surface-based mutational strategies can facilitate the rational improvement of molecular chaperones.


Assuntos
Proteínas de Escherichia coli/metabolismo , Proteínas Periplásmicas/metabolismo , Agregados Proteicos , Animais , Bovinos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Interações Hidrofóbicas e Hidrofílicas , Cinética , Lactalbumina/química , Lactalbumina/metabolismo , Mutagênese Sítio-Dirigida , Proteínas Periplásmicas/química , Proteínas Periplásmicas/genética , Ligação Proteica , Eletricidade Estática , Especificidade por Substrato
17.
ACS Chem Biol ; 15(4): 1078-1088, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32105441

RESUMO

In contrast to the myriad approaches available to study protein misfolding and aggregation in vitro, relatively few tools are available for the study of these processes in the cellular context. This is in part due to the complexity of the cellular environment which, for instance, interferes with many spectroscopic approaches. Here, we describe a tripartite fusion approach that can be used to assess in vivo protein stability and solubility in the cytosol of Saccharomyces cerevisiae. Our biosensors contain tripartite fusions in which a protein of interest is inserted into antibiotic resistance markers. These fusions act to directly link the aggregation susceptibility and stability of the inserted protein to antibiotic resistance. We demonstrate a linear relationship between the thermodynamic stabilities of variants of the model folding protein immunity protein 7 (Im7) fused into the resistance markers and their antibiotic resistance readouts. We also use this system to investigate the in vivo properties of the yeast prion proteins Sup35 and Rnq1 and proteins whose aggregation is associated with some of the most prevalent neurodegenerative misfolding disorders, including peptide amyloid beta 1-42 (Aß42), which is involved in Alzheimer's disease, and protein α-synuclein, which is linked to Parkinson's disease.


Assuntos
Técnicas Biossensoriais/métodos , Proteínas de Saccharomyces cerevisiae/metabolismo , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Escherichia coli/química , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Fatores de Terminação de Peptídeos/química , Fatores de Terminação de Peptídeos/metabolismo , Príons/química , Príons/metabolismo , Dobramento de Proteína , Multimerização Proteica , Estabilidade Proteica , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/química , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo
18.
Acta Crystallogr D Struct Biol ; 75(Pt 12): 1084-1095, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31793902

RESUMO

Although often presented as taking single `snapshots' of the conformation of a protein, X-ray crystallography provides an averaged structure over time and space within the crystal. The important but difficult task of characterizing structural ensembles in crystals is typically limited to small conformational changes, such as multiple side-chain conformations. A crystallographic method was recently introduced that utilizes residual electron and anomalous density (READ) to characterize structural ensembles encompassing large-scale structural changes. Key to this method is an ability to accurately measure anomalous signals and distinguish them from noise or other anomalous scatterers. This report presents an optimized data-collection and analysis strategy for partially occupied iodine anomalous signals. Using the long-wavelength-optimized beamline I23 at Diamond Light Source, the ability to accurately distinguish the positions of anomalous scatterers with occupancies as low as ∼12% is demonstrated. The number and positions of these anomalous scatterers are consistent with previous biophysical, kinetic and structural data that suggest that the protein Im7 binds to the chaperone Spy in multiple partially occupied conformations. Finally, READ selections demonstrate that re-measured data using the new protocols are consistent with the previously characterized structural ensemble of the chaperone Spy with its client Im7. This study shows that a long-wavelength beamline results in easily validated anomalous signals that are strong enough to be used to detect and characterize highly disordered sections of crystal structures.


Assuntos
Proteínas de Transporte/química , Cristalização/métodos , Cristalografia por Raios X/métodos , Proteínas de Escherichia coli/química , Chaperonas Moleculares/química , Proteínas Periplásmicas/química , Cinética , Modelos Moleculares , Conformação Proteica
19.
Proc Natl Acad Sci U S A ; 116(46): 23040-23049, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31659041

RESUMO

The assembly of small disordered proteins into highly ordered amyloid fibrils in Alzheimer's and Parkinson's patients is closely associated with dementia and neurodegeneration. Understanding the process of amyloid formation is thus crucial in the development of effective treatments for these devastating neurodegenerative diseases. Recently, a tiny, highly conserved and disordered protein called SERF was discovered to modify amyloid formation in Caenorhabditis elegans and humans. Here, we use kinetics measurements and native ion mobility-mass spectrometry to show that SERF mainly affects the rate of primary nucleation in amyloid formation for the disease-related proteins Aß40 and α-synuclein. SERF's high degree of plasticity enables it to bind various conformations of monomeric Aß40 and α-synuclein to form structurally diverse, fuzzy complexes. This structural diversity persists into early stages of amyloid formation. Our results suggest that amyloid nucleation is considerably more complex than age-related conversion of Aß40 and α-synuclein into single amyloid-prone conformations.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Fragmentos de Peptídeos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , alfa-Sinucleína/metabolismo , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/genética , Humanos , Cinética , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Agregados Proteicos , Ligação Proteica , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , alfa-Sinucleína/química , alfa-Sinucleína/genética
20.
Nat Commun ; 10(1): 4833, 2019 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-31645566

RESUMO

It is generally assumed that protein clients fold following their release from chaperones instead of folding while remaining chaperone-bound, in part because binding is assumed to constrain the mobility of bound clients. Previously, we made the surprising observation that the ATP-independent chaperone Spy allows its client protein Im7 to fold into the native state while continuously bound to the chaperone. Spy apparently permits sufficient client mobility to allow folding to occur while chaperone bound. Here, we show that strengthening the interaction between Spy and a recently discovered client SH3 strongly inhibits the ability of the client to fold while chaperone bound. The more tightly Spy binds to its client, the more it slows the folding rate of the bound client. Efficient chaperone-mediated folding while bound appears to represent an evolutionary balance between interactions of sufficient strength to mediate folding and interactions that are too tight, which tend to inhibit folding.


Assuntos
Proteínas de Escherichia coli/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas Periplásmicas/metabolismo , Dobramento de Proteína , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Domínios de Homologia de src , Animais , Galinhas , Cinética , Ligação Proteica , Redobramento de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA