Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Basic Res Cardiol ; 119(3): 481-503, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38517482

RESUMO

Hypercholesterolemia is a major risk factor for coronary artery diseases and cardiac ischemic events. Cholesterol per se could also have negative effects on the myocardium, independently from hypercholesterolemia. Previously, we reported that myocardial ischemia-reperfusion induces a deleterious build-up of mitochondrial cholesterol and oxysterols, which is potentiated by hypercholesterolemia and prevented by translocator protein (TSPO) ligands. Here, we studied the mechanism by which sterols accumulate in cardiac mitochondria and promote mitochondrial dysfunction. We performed myocardial ischemia-reperfusion in rats to evaluate mitochondrial function, TSPO, and steroidogenic acute regulatory protein (STAR) levels and the related mitochondrial concentrations of sterols. Rats were treated with the cholesterol synthesis inhibitor pravastatin or the TSPO ligand 4'-chlorodiazepam. We used Tspo deleted rats, which were phenotypically characterized. Inhibition of cholesterol synthesis reduced mitochondrial sterol accumulation and protected mitochondria during myocardial ischemia-reperfusion. We found that cardiac mitochondrial sterol accumulation is the consequence of enhanced influx of cholesterol and not of the inhibition of its mitochondrial metabolism during ischemia-reperfusion. Mitochondrial cholesterol accumulation at reperfusion was related to an increase in mitochondrial STAR but not to changes in TSPO levels. 4'-Chlorodiazepam inhibited this mechanism and prevented mitochondrial sterol accumulation and mitochondrial ischemia-reperfusion injury, underlying the close cooperation between STAR and TSPO. Conversely, Tspo deletion, which did not alter cardiac phenotype, abolished the effects of 4'-chlorodiazepam. This study reveals a novel mitochondrial interaction between TSPO and STAR to promote cholesterol and deleterious sterol mitochondrial accumulation during myocardial ischemia-reperfusion. This interaction regulates mitochondrial homeostasis and plays a key role during mitochondrial injury.


Assuntos
Mitocôndrias Cardíacas , Traumatismo por Reperfusão Miocárdica , Fosfoproteínas , Animais , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/genética , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Mitocôndrias Cardíacas/efeitos dos fármacos , Masculino , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Colesterol/metabolismo , Ratos , Receptores de GABA/metabolismo , Receptores de GABA/genética , Ratos Wistar , Modelos Animais de Doenças , Benzodiazepinonas , Proteínas de Transporte , Receptores de GABA-A
2.
Pharmacol Res ; 191: 106770, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37068532

RESUMO

Metal carbonyls have been developed as carbon monoxide-releasing molecules (CO-RMs) to deliver CO for therapeutic purposes. The manganese-based CORM-401 has been recently reported to exert beneficial effects in obese animals by reducing body weight gain, improving glucose metabolism and reprogramming adipose tissue towards a healthy phenotype. Here, we report on the synthesis and characterization of glyco-CORMs, obtained by grafting manganese carbonyls on dextrans (70 and 40 kDa), based on the fact that polysaccharides facilitate the targeting of drugs to adipose tissue. We found that glyco-CORMs efficiently deliver CO to cells in vitro with higher CO accumulation in adipocytes compared to other cell types. Oral administration of two selected glyco-CORMs (5b and 6b) resulted in CO accumulation in various organs, including adipose tissue. In addition, glyco-CORM 6b administered for eight weeks elicited anti-obesity and positive metabolic effects in mice fed a high fat diet. Our study highlights the feasibility of creating carriers with multiple functionalized CO-RMs.


Assuntos
Monóxido de Carbono , Compostos Organometálicos , Camundongos , Animais , Monóxido de Carbono/metabolismo , Manganês , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Aumento de Peso , Polissacarídeos , Compostos Organometálicos/farmacologia
3.
Sci Rep ; 11(1): 20294, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34645865

RESUMO

Enzyme engineering approaches have allowed to extend the collection of enzymatic tools available for synthetic purposes. However, controlling the regioselectivity of the reaction remains challenging, in particular when dealing with carbohydrates bearing numerous reactive hydroxyl groups as substrates. Here, we used a computer-aided design framework to engineer the active site of a sucrose-active [Formula: see text]-transglucosylase for the 1,2-cis-glucosylation of a lightly protected chemically synthesized tetrasaccharide, a common precursor for the synthesis of serotype-specific S. flexneri O-antigen fragments. By targeting 27 amino acid positions of the acceptor binding subsites of a GH70 branching sucrase, we used a RosettaDesign-based approach to propose 49 mutants containing up to 15 mutations scattered over the active site. Upon experimental evaluation, these mutants were found to produce up to six distinct pentasaccharides, whereas only two were synthesized by the parental enzyme. Interestingly, we showed that by introducing specific mutations in the active site of a same enzyme scaffold, it is possible to control the regiospecificity of the 1,2-cis glucosylation of the tetrasaccharide acceptor and produce a unique diversity of pentasaccharide bricks. This work offers novel opportunities for the development of highly convergent chemo-enzymatic routes toward S. flexneri haptens.


Assuntos
Glucose/análise , Glucose/química , Oligossacarídeos/química , Polissacarídeos/química , Sacarase/química , Biotecnologia , Carboidratos/química , Domínio Catalítico , Cromatografia Líquida de Alta Pressão , Desenho Assistido por Computador , Enzimas/química , Glicosilação , Haptenos , Hidrolases/metabolismo , Biologia Molecular , Mutação , Antígenos O , Engenharia de Proteínas/métodos , Shigella flexneri , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
4.
Sci Rep ; 11(1): 2474, 2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33510212

RESUMO

The (chemo-)enzymatic synthesis of oligosaccharides has been hampered by the lack of appropriate enzymatic tools with requisite regio- and stereo-specificities. Engineering of carbohydrate-active enzymes, in particular targeting the enzyme active site, has notably led to catalysts with altered regioselectivity of the glycosylation reaction thereby enabling to extend the repertoire of enzymes for carbohydrate synthesis. Using a collection of 22 mutants of ΔN123-GBD-CD2 branching sucrase, an enzyme from the Glycoside Hydrolase family 70, containing between one and three mutations in the active site, and a lightly protected chemically synthesized tetrasaccharide as an acceptor substrate, we showed that altered glycosylation product specificities could be achieved compared to the parental enzyme. Six mutants were selected for further characterization as they produce higher amounts of two favored pentasaccharides compared to the parental enzyme and/or new products. The produced pentasaccharides were shown to be of high interest as they are precursors of representative haptens of Shigella flexneri serotypes 3a, 4a and 4b. Furthermore, their synthesis was shown to be controlled by the mutations introduced in the active site, driving the glucosylation toward one extremity or the other of the tetrasaccharide acceptor. To identify the molecular determinants involved in the change of ΔN123-GBD-CD2 regioselectivity, extensive molecular dynamics simulations were carried out in combination with in-depth analyses of amino acid residue networks. Our findings help to understand the inter-relationships between the enzyme structure, conformational flexibility and activity. They also provide new insight to further engineer this class of enzymes for the synthesis of carbohydrate components of bacterial haptens.


Assuntos
Proteínas de Bactérias , Haptenos/biossíntese , Oligossacarídeos/biossíntese , Engenharia de Proteínas , Shigella flexneri/metabolismo , Sacarase , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Haptenos/genética , Oligossacarídeos/genética , Shigella flexneri/genética , Sacarase/genética , Sacarase/metabolismo
5.
J Org Chem ; 86(3): 2058-2075, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-32700907

RESUMO

Progress in glycoscience is strongly dependent on the availability of broadly diverse tailor-made, well-defined, and often complex oligosaccharides. Herein, going beyond natural resources and aiming to circumvent chemical boundaries in glycochemistry, we tackle the development of an in vitro chemoenzymatic strategy holding great potential to answer the need for molecular diversity characterizing microbial cell-surface carbohydrates. The concept is exemplified in the context of Shigella flexneri, a major cause of diarrhoeal disease. Aiming at a broad serotype coverage S. flexneri glycoconjugate vaccine, a non-natural lightly protected tetrasaccharide was designed for compatibility with (i) serotype-specific glucosylations and O-acetylations defining S. flexneri O-antigens, (ii) recognition by suitable α-transglucosylases, and (iii) programmed oligomerization following enzymatic α-d-glucosylation. The tetrasaccharide core was chemically synthesized from two crystalline monosaccharide precursors. Six α-transglucosylases found in the glycoside hydrolase family 70 were shown to transfer glucosyl residues on the non-natural acceptor. The successful proof of concept is achieved for a pentasaccharide featuring the glucosylation pattern from the S. flexneri type IV O-antigen. It demonstrates the potential of appropriately planned chemoenzymatic pathways involving non-natural acceptors and low-cost donor/transglucosylase systems to achieve the demanding regioselective α-d-glucosylation of large substrates, paving the way to microbial oligosaccharides of vaccinal interest.


Assuntos
Antígenos O , Shigella flexneri , Sequência de Carboidratos , Oligossacarídeos , Sorogrupo
6.
Hum Vaccin Immunother ; 15(6): 1338-1356, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31158047

RESUMO

Shigella are gram-negative bacteria that cause severe diarrhea and dysentery, with a high level of antimicrobial resistance. Disease-induced protection against reinfection in Shigella-endemic areas provides convincing evidence on the feasibility of a vaccine and on the importance of Shigella lipopolysaccharides as targets of the host humoral protective immune response against disease. This article provides an overview of the original and current strategies toward the development of a Shigella glycan-protein conjugate vaccine that would cover the most commonly detected strains. Going beyond pioneering "lattice"-type polysaccharide-protein conjugates, progress, and challenges are addressed with focus on promising alternatives, which have reached phases I and II clinical trial. Glycoengineered bioconjugates and "sun"-type conjugates featuring well-defined synthetic carbohydrate antigens are discussed with insights on the molecular parameters governing the rational design of a cost-effective glycoconjugate vaccine efficacious in preventing diseases caused by Shigella in the most at risk populations, young children living in endemic areas.


Assuntos
Disenteria Bacilar/prevenção & controle , Glicoconjugados/imunologia , Vacinas contra Shigella/química , Vacinas contra Shigella/imunologia , Shigella/imunologia , Anticorpos Antibacterianos/imunologia , Antígenos de Bactérias/imunologia , Carboidratos/imunologia , Ensaios Clínicos como Assunto , Glicoconjugados/administração & dosagem , Humanos , Shigella/química , Vacinas Conjugadas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA