Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(16)2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-36012668

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the degeneration of motor neurons. Mutations in the superoxide dismutase (SOD1) gene, causing protein misfolding and aggregation, were suggested as the pathogenic mechanisms involved in familial ALS cases. In the present study, we investigated the potential therapeutic effect of C4 and C5, two derivatives of the chemical chaperone 4-phenylbutyric acid (4-PBA). By combining in vivo and in vitro techniques, we show that, although C4 and C5 successfully inhibited amyloid aggregation of recombinant mutant SOD1 in a dose-dependent manner, they failed to suppress the accumulation of misfolded SOD1. Moreover, C4 or C5 daily injections to SOD1G93A mice following onset had no effect on either the accumulation of misfolded SOD1 or the neuroinflammatory response in the spinal cord and, consequently, failed to extend the survival of SOD1G93A mice or to improve their motor symptoms. Finally, pharmacokinetic (PK) studies demonstrated that high concentrations of C4 and C5 reached the brain and spinal cord but only for a short period of time. Thus, our findings suggest that use of such chemical chaperones for ALS drug development may need to be optimized for more effective results.


Assuntos
Esclerose Lateral Amiotrófica , Doenças Neurodegenerativas , Amiloide/metabolismo , Proteínas Amiloidogênicas/metabolismo , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Animais , Butilaminas , Modelos Animais de Doenças , Progressão da Doença , Camundongos , Camundongos Transgênicos , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/farmacologia , Doenças Neurodegenerativas/metabolismo , Fenilbutiratos , Medula Espinal/metabolismo , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1/metabolismo
2.
Sci Rep ; 12(1): 9570, 2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35688953

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by loss of upper and lower motor neurons. About 20% of familial ALS cases are caused by dominant mutations in SOD1. It has been suggested that toxicity of mutant SOD1 results from its misfolding, however, it is unclear why misfolded SOD1 accumulates within specific tissues. We have demonstrated that macrophage migration inhibitory factor (MIF), a multifunctional protein with cytokine/chemokine and chaperone-like activity, inhibits the accumulation and aggregation of misfolded SOD1. Although MIF homolog, D-dopachrome tautomerase (D-DT/MIF-2), shares structural and genetic similarities with MIF, its biological function is not well understood. In the current study, we investigated, for the first time, the mechanism of action of D-DT in a model of ALS. We show that D-DT inhibits mutant SOD1 amyloid aggregation in vitro, promoting the formation of amorphous aggregates. Moreover, we report that D-DT interacts with mutant SOD1, but does not inhibit misfolded mutant SOD1 accumulation and toxicity in neuronal cells. Finally, we show that D-DT is expressed mainly in liver and kidney, with extremely low expression in brain and spinal cord of adult mice. Our findings contribute to better understanding of D-DT versus MIF function in the context of ALS.


Assuntos
Esclerose Lateral Amiotrófica , Fatores Inibidores da Migração de Macrófagos , Doenças Neurodegenerativas , Esclerose Lateral Amiotrófica/metabolismo , Animais , Oxirredutases Intramoleculares , Fatores Inibidores da Migração de Macrófagos/metabolismo , Camundongos , Neurônios Motores/metabolismo , Dobramento de Proteína , Superóxido Dismutase-1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA