Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 3791, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36882448

RESUMO

Life-history traits are used as proxies of fitness in insects including Drosophila. Egg size is an adaptive and ecologically important trait potentially with genetic variation across different populations. However, the low throughput of manual measurement of egg size has hampered the widespread use of this trait in evolutionary biology and population genetics. We established a method for accurate and high throughput measurement of Drosophila egg size using large particle flow cytometry (LPFC). The size estimates using LPFC are accurate and highly correlated with the manual measurements. The measurement of egg size is high throughput (average of 214 eggs measured per minute) and viable eggs of a specific size can be sorted rapidly (average of 70 eggs per minute). Sorting by LPFC does not reduce the survival of eggs making it a suitable approach for sorting eggs for downstream analyses. This protocol can be applied to any organism within the detectable size range (10-1500 µm) of the large particle flow cytometers. We discuss the potential applications of this method and provide recommendations for optimizing the protocol for other organisms.


Assuntos
Evolução Biológica , Drosophila , Animais , Movimento Celular , Ovos , Citometria de Fluxo
2.
Nat Rev Genet ; 21(12): 782, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32764717

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

3.
Nat Rev Genet ; 21(12): 769-781, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32601318

RESUMO

Most adaption processes have a polygenic genetic basis, but even with the recent explosive growth of genomic data we are still lacking a unified framework describing the dynamics of selected alleles. Building on recent theoretical and empirical work we introduce the concept of adaptive architecture, which extends the genetic architecture of an adaptive trait by factors influencing its adaptive potential and population genetic principles. Because adaptation can be typically achieved by many different combinations of adaptive alleles (redundancy), we describe how two characteristics - heterogeneity among loci and non-parallelism between replicated populations - are hallmarks for the characterization of polygenic adaptation in evolving populations. We discuss how this unified framework can be applied to natural and experimental populations.


Assuntos
Adaptação Biológica , Seleção Genética , Animais , Estudo de Associação Genômica Ampla , Humanos , Modelos Biológicos , Herança Multifatorial
4.
Mol Biol Evol ; 37(9): 2630-2640, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32402077

RESUMO

Neuronal activity is temperature sensitive and affects behavioral traits important for individual fitness, such as locomotion and courtship. Yet, we do not know enough about the evolutionary response of neuronal phenotypes in new temperature environments. Here, we use long-term experimental evolution of Drosophila simulans populations exposed to novel temperature regimes. Here, we demonstrate a direct relationship between thermal selective pressure and the evolution of neuronally expressed molecular and behavioral phenotypes. Several essential neuronal genes evolve lower expression at high temperatures and higher expression at low temperatures, with dopaminergic neurons standing out by displaying the most consistent expression change across independent replicates. We functionally validate the link between evolved gene expression and behavioral changes by pharmacological intervention in the experimentally evolved D. simulans populations as well as by genetically triggered expression changes of key genes in D. melanogaster. As natural temperature clines confirm our results for Drosophila and Anopheles populations, we conclude that neuronal dopamine evolution is a key factor for temperature adaptation.


Assuntos
Aclimatação/genética , Evolução Biológica , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Drosophila/metabolismo , Animais , Dopamina/genética , Drosophila/genética , Locomoção/genética , Masculino , Fenótipo
5.
Genome Biol Evol ; 12(6): 890-904, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32282913

RESUMO

In molecular population genetics, adaptation is typically thought to occur via selective sweeps, where targets of selection have independent effects on the phenotype and rise to fixation, whereas in quantitative genetics, many loci contribute to the phenotype and subtle frequency changes occur at many loci during polygenic adaptation. The sweep model makes specific predictions about frequency changes of beneficial alleles and many test statistics have been developed to detect such selection signatures. Despite polygenic adaptation is probably the prevalent mode of adaptation, because of the traditional focus on the phenotype, we are lacking a solid understanding of the similarities and differences of selection signatures under the two models. Recent theoretical and empirical studies have shown that both selective sweep and polygenic adaptation models could result in a sweep-like genomic signature; therefore, additional criteria are needed to distinguish the two models. With replicated populations and time series data, experimental evolution studies have the potential to identify the underlying model of adaptation. Using the framework of experimental evolution, we performed computer simulations to study the pattern of selected alleles for two models: 1) adaptation of a trait via independent beneficial mutations that are conditioned for fixation, that is, selective sweep model and 2) trait optimum model (polygenic adaptation), that is adaptation of a quantitative trait under stabilizing selection after a sudden shift in trait optimum. We identify several distinct patterns of selective sweep and trait optimum models in populations of different sizes. These features could provide the foundation for development of quantitative approaches to differentiate the two models.


Assuntos
Adaptação Biológica/genética , Evolução Biológica , Modelos Genéticos , Característica Quantitativa Herdável , Seleção Genética
6.
Elife ; 92020 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-32083552

RESUMO

The pervasive occurrence of sexual dimorphism demonstrates different adaptive strategies of males and females. While different reproductive strategies of the two sexes are well-characterized, very little is known about differential functional requirements of males and females in their natural habitats. Here, we study the impact environmental change on the selection response in both sexes. Exposing replicated Drosophila populations to a novel temperature regime, we demonstrate sex-specific changes in gene expression, metabolic and behavioral phenotypes in less than 100 generations. This indicates not only different functional requirements of both sexes in the new environment but also rapid sex-specific adaptation. Supported by computer simulations we propose that altered sex-biased gene regulation from standing genetic variation, rather than new mutations, is the driver of rapid sex-specific adaptation. Our discovery of environmentally driven divergent functional requirements of males and females has important implications-possibly even for gender aware medical treatments.


Male and female animals of the same species sometimes differ in appearance and sexual behavior, a phenomenon known as sexual dimorphism. Both sexes share most of the same genes, but differences can emerge because of the way these are read by cells to create proteins ­ a process called gene expression. For instance, certain genes can be more expressed in males than in females, and vice-versa. Most studies into the emergence of sexual dimorphism have taken place in stable environments with few changes in climate or other factors. Therefore, the potential impact of environmental changes on sexual dimorphism has been largely overlooked. Here, Hsu et al. used genetic and computational approaches to investigate whether male and female fruit flies adapt differently to a new, hotter environment over several generations. The experiment showed that, after only 100 generations, the way that 60% of all genes were expressed evolved in a different direction in the two sexes. This led to differences in how the males and females made and broke down fat molecules, and in how their neurons operated. These expression changes also translated in differences for high-level biological processes. For instance, animals in the new settings ended up behaving differently, with the males at the end of the experiment spending more time chasing females than the ancestral flies. These findings demonstrate that male and female fruit flies adapt many biological processes (including metabolism and behaviors) differently to cope with changes in their environment, and that many different genes support these sex-specific adaptations. Ultimately, the work by Hsu et al. may inform medical strategies that take into account interactions between the patient's sex and their environment.


Assuntos
Adaptação Fisiológica/fisiologia , Drosophila melanogaster/fisiologia , Adaptação Fisiológica/genética , Animais , Feminino , Regulação da Expressão Gênica/fisiologia , Genes/fisiologia , Temperatura Alta , Masculino , Fatores Sexuais
7.
Mol Ecol ; 28(3): 521-524, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30793868

RESUMO

For almost a decade the combination of whole genome sequencing with experimental evolution (Evolve and Resequence, E&R; Turner, Stewart, Fields, Rice, & Tarone, ) has been used to study adaptation in outcrossing organisms. However, complications caused by inversions and hitchhiking variants have prevented this powerful approach from living up to its potential. In this issue of Molecular Ecology, Michalak, Kang, Schou, Garner, and Loeschke (), provide an important step ahead by using a population of Drosophila melanogaster devoid of segregating inversions to identify the genetic basis of resistance to five environmental stressors. They further address the challenge of hitchhiking variants by reconstructing selected haplotype blocks. While it is apparent that the haplotype block reconstruction needs further refinements, their work underpins the potential of E&R studies in Drosophila to address fundamental questions in evolutionary biology.


Assuntos
Drosophila melanogaster , Drosophila , Animais , Genômica , Haplótipos , Polimorfismo de Nucleotídeo Único
8.
PLoS Biol ; 17(2): e3000128, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30716062

RESUMO

The genetic architecture of adaptive traits is of key importance to predict evolutionary responses. Most adaptive traits are polygenic-i.e., result from selection on a large number of genetic loci-but most molecularly characterized traits have a simple genetic basis. This discrepancy is best explained by the difficulty in detecting small allele frequency changes (AFCs) across many contributing loci. To resolve this, we use laboratory natural selection to detect signatures for selective sweeps and polygenic adaptation. We exposed 10 replicates of a Drosophila simulans population to a new temperature regime and uncovered a polygenic architecture of an adaptive trait with high genetic redundancy among beneficial alleles. We observed convergent responses for several phenotypes-e.g., fitness, metabolic rate, and fat content-and a strong polygenic response (99 selected alleles; mean s = 0.059). However, each of these selected alleles increased in frequency only in a subset of the evolving replicates. We discerned different evolutionary paradigms based on the heterogeneous genomic patterns among replicates. Redundancy and quantitative trait (QT) paradigms fitted the experimental data better than simulations assuming independent selective sweeps. Our results show that natural D. simulans populations harbor a vast reservoir of adaptive variation facilitating rapid evolutionary responses using multiple alternative genetic pathways converging at a new phenotypic optimum. This key property of beneficial alleles requires the modification of testing strategies in natural populations beyond the search for convergence on the molecular level.


Assuntos
Adaptação Fisiológica/genética , Drosophila simulans/genética , Drosophila simulans/fisiologia , Herança Multifatorial/genética , Alelos , Animais , Evolução Biológica , Aptidão Genética , Heterogeneidade Genética , Genoma de Inseto , Haplótipos/genética , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética
9.
Genes (Basel) ; 10(2)2019 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-30696109

RESUMO

Gene expression profiling is one of the most reliable high-throughput phenotyping methods, allowing researchers to quantify the transcript abundance of expressed genes. Because many biotic and abiotic factors influence gene expression, it is recommended to control them as tightly as possible. Here, we show that a 24 h age difference of Drosophilasimulans females that were subjected to RNA sequencing (RNA-Seq) five and six days after eclosure resulted in more than 2000 differentially expressed genes. This is twice the number of genes that changed expression during 100 generations of evolution in a novel hot laboratory environment. Importantly, most of the genes differing in expression due to age introduce false positives or negatives if an adaptive gene expression analysis is not controlled for age. Our results indicate that tightly controlled experimental conditions, including precise developmental staging, are needed for reliable gene expression analyses, in particular in an evolutionary framework.


Assuntos
Envelhecimento/genética , Evolução Molecular , Termotolerância/genética , Transcriptoma , Animais , Drosophila , Feminino , Masculino
10.
Sci Rep ; 8(1): 4469, 2018 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-29535355

RESUMO

Fecundity is probably the most frequently studied fitness component in Drosophila. Nevertheless, currently used methods to measure fecundity are not well-suited for large-scale experiments, with many populations being assayed in parallel. Here we present a standardized pipeline to measure fecundity in many Drosophila population samples with substantially reduced hand on times. Using a high-contrast medium for egg laying, we developed a Java plug-in for ImageJ to quantify the number of eggs by image processing. We show that our method is fast and provides reliable egg counts.


Assuntos
Drosophila melanogaster/fisiologia , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Animais , Feminino , Fertilidade , Oviposição
11.
Genome Biol Evol ; 9(9): 2211-2225, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28922871

RESUMO

The genus Conus comprises approximately 700 species of venomous marine cone snails that are highly efficient predators of worms, snails, and fish. In evolutionary terms, cone snails are relatively young with the earliest fossil records occurring in the Lower Eocene, 55 Ma. The rapid radiation of cone snail species has been accompanied by remarkably high rates of toxin diversification. To shed light on the molecular mechanisms that accompany speciation, we investigated the toxin repertoire of two sister species, Conus andremenezi and Conus praecellens, that were until recently considered a single variable species. A total of 196 and 250 toxin sequences were identified in the venom gland transcriptomes of C. andremenezi and C. praecellens belonging to 25 and 29 putative toxin gene superfamilies, respectively. Comparative analysis with closely (Conus tribblei and Conus lenavati) and more distantly related species (Conus geographus) suggests that speciation is associated with significant diversification of individual toxin genes (exogenes) whereas the expression pattern of toxin gene superfamilies within lineages remains largely conserved. Thus, changes within individual toxin sequences can serve as a sensitive indicator for recent speciation whereas changes in the expression pattern of gene superfamilies are likely to reflect more dramatic differences in a species' interaction with its prey, predators, and competitors.


Assuntos
Conotoxinas/genética , Caramujo Conus/classificação , Caramujo Conus/genética , Transcriptoma , Sequência de Aminoácidos , Animais , Filogenia , Alinhamento de Sequência , Especificidade da Espécie
12.
G3 (Bethesda) ; 7(7): 2337-2343, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28546383

RESUMO

The combination of experimental evolution with high-throughput sequencing of pooled individuals-i.e., evolve and resequence (E&R)-is a powerful approach to study adaptation from standing genetic variation under controlled, replicated conditions. Nevertheless, E&R studies in Drosophila melanogaster have frequently resulted in inordinate numbers of candidate SNPs, particularly for complex traits. Here, we contrast the genomic signature of adaptation following ∼60 generations in a novel hot environment for D. melanogaster and D. simulans For D. simulans, the regions carrying putatively selected loci were far more distinct, and thus harbored fewer false positives, than those in D. melanogaster We propose that species without segregating inversions and higher recombination rates, such as D. simulans, are better suited for E&R studies that aim to characterize the genetic variants underlying the adaptive response.


Assuntos
Adaptação Fisiológica/genética , Drosophila simulans/genética , Loci Gênicos , Característica Quantitativa Herdável , Animais , Drosophila melanogaster , Polimorfismo de Nucleotídeo Único
13.
Mol Genet Genomics ; 291(1): 411-22, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26423067

RESUMO

The evolvability of venom components (in particular, the gene-encoded peptide toxins) in venomous species serves as an adaptive strategy allowing them to target new prey types or respond to changes in the prey field. The structure, organization, and expression of the venom peptide genes may provide insights into the molecular mechanisms that drive the evolution of such genes. Conus is a particularly interesting group given the high chemical diversity of their venom peptides, and the rapid evolution of the conopeptide-encoding genes. Conus genomes, however, are large and characterized by a high proportion of repetitive sequences. As a result, the structure and organization of conopeptide genes have remained poorly known. In this study, a survey of the genome of Conus tribblei was undertaken to address this gap. A partial assembly of C. tribblei genome was generated; the assembly, though consisting of a large number of fragments, accounted for 2160.5 Mb of sequence. A large number of repetitive genomic elements consisting of 642.6 Mb of retrotransposable elements, simple repeats, and novel interspersed repeats were observed. We characterized the structural organization and distribution of conotoxin genes in the genome. A significant number of conopeptide genes (estimated to be between 148 and 193) belonging to different superfamilies with complete or nearly complete exon regions were observed, ~60 % of which were expressed. The unexpressed conopeptide genes represent hidden but significant conotoxin diversity. The conotoxin genes also differed in the frequency and length of the introns. The interruption of exons by long introns in the conopeptide genes and the presence of repeats in the introns may indicate the importance of introns in facilitating recombination, evolution and diversification of conotoxins. These findings advance our understanding of the structural framework that promotes the gene-level molecular evolution of venom peptides.


Assuntos
Conotoxinas/genética , Caramujo Conus/genética , Genoma/genética , Sequência de Aminoácidos , Animais , Evolução Molecular , Éxons/genética , Íntrons/genética , Dados de Sequência Molecular , Peptídeos/genética , Filogenia , Alinhamento de Sequência , Análise de Sequência de DNA/métodos , Transcriptoma/genética
14.
Mitochondrial DNA A DNA Mapp Seq Anal ; 27(6): 4451-4452, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-26470735

RESUMO

The genus Conus sensu lato consists of 500-700 species. However, the mitochondrial genomes of only few species have been fully sequenced and reported so far. In this study, the complete mitochondrial genome of Conus tribblei, a member of the poorly known subgenus Splinoconus is sequenced with the mean coverage of 604×. The mitochondrial genome is 15 570 bp long and consists of genes encoding for 13 respiratory chain proteins, 22 tRNA and 2 rRNA. The gene organization is highly conserved among the Conus species. The longest intergenic region between tRNA-Phe and cytochrome c oxidase subunit III (cox3), which in C. tribblei is 169 bp long and contains a 112 bp long segment of inverted repeat, represents the putative control region. The control regions of Conus species exhibited variability in the length and position of the inverted repeats. Therefore, this region may have the potential to be used as a genetic marker for species discrimination.


Assuntos
Caramujo Conus/genética , Genoma Mitocondrial , Animais , Composição de Bases , Caramujo Conus/classificação , DNA/química , DNA/isolamento & purificação , DNA/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/química , Complexo IV da Cadeia de Transporte de Elétrons/genética , Sequências Repetidas Invertidas/genética , Fases de Leitura Aberta/genética , Filogenia , RNA Ribossômico/química , RNA Ribossômico/genética , RNA de Transferência/química , RNA de Transferência/genética , Análise de Sequência de DNA
15.
Genome Biol Evol ; 7(6): 1797-814, 2015 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-26047846

RESUMO

Genes that encode products with exogenous targets, which comprise an organism's "exogenome," typically exhibit high rates of evolution. The genes encoding the venom peptides (conotoxins or conopeptides) in Conus sensu lato exemplify this class of genes. Their rapid diversification has been established and is believed to be linked to the high speciation rate in this genus. However, the molecular mechanisms that underlie venom peptide diversification and ultimately emergence of new species remain poorly understood. In this study, the sequences and expression levels of conotoxins from several specimens of two closely related worm-hunting species, Conus tribblei and Conus lenavati, were compared through transcriptome analysis. Majority of the identified putative conopeptides were novel, and their diversity, even in each specimen, was remarkably high suggesting a wide range of prey targets for these species. Comparison of the interspecific expression patterns of conopeptides at the superfamily level resulted in the discovery of both conserved as well as species-specific expression patterns, indicating divergence in the regulatory network affecting conotoxin gene expression. Comparison of the transcriptomes of the individual snails revealed that each specimen produces a distinct set of highly expressed conopeptides, reflecting the capability of individual snails to fine-tune the composition of their venoms. These observations reflect the role of sequence divergence and divergence in the control of expression for specific conopeptides in the evolution of the exogenome and hence venom composition in Conus.


Assuntos
Conotoxinas/genética , Caramujo Conus/genética , Evolução Molecular , Animais , Conotoxinas/metabolismo , Caramujo Conus/classificação , Caramujo Conus/metabolismo , Feminino , Variação Genética , Genoma , Masculino , Dados de Sequência Molecular , Peptídeos/genética , Peptídeos/metabolismo , Filogenia , Transcriptoma
16.
Mar Biotechnol (NY) ; 17(1): 81-98, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25117477

RESUMO

The venom of each species of Conus contains different kinds of pharmacologically active peptides which are mostly unique to that species. Collectively, the ~500-700 species of Conus produce a large number of these peptides, perhaps exceeding 140,000 different types in total. To date, however, only a small fraction of this diversity has been characterized via transcriptome sequencing. In addition, the sampling of this chemical diversity has not been uniform across the different lineages in the genus. In this study, we used high-throughput transcriptome sequencing approach to further investigate the diversity of Conus venom peptides. We chose a species, Conus tribblei, as a representative of a poorly studied clade of Conus. Using the Roche 454 and Illumina platforms, we discovered 136 unique and novel putative conopeptides belonging to 30 known gene superfamilies and 6 new conopeptide groups, the greatest diversity so far observed from a transcriptome. Most of the identified peptides exhibited divergence from the known conopeptides, and some contained cysteine frameworks observed for the first time in cone snails. In addition, several enzymes involved in posttranslational modification of conopeptides and also some proteins involved in efficient delivery of the conopeptides to prey were identified as well. Interestingly, a number of conopeptides highly similar to the conopeptides identified in a phylogenetically distant species, the generalist feeder Conus californicus, were observed. The high diversity of conopeptides and the presence of conopeptides similar to those in C. californicus suggest that C. tribblei may have a broad range of prey preferences.


Assuntos
Conotoxinas/genética , Caramujo Conus/genética , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Peptídeos/genética , Transcriptoma/genética , Animais , Sequência de Bases , Teorema de Bayes , Conotoxinas/química , Caramujo Conus/classificação , Perfilação da Expressão Gênica/métodos , Modelos Genéticos , Dados de Sequência Molecular , Peptídeos/análise , Filipinas , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA