Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(21): 11744-11752, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32404418

RESUMO

Auditory experience drives neural circuit refinement during windows of heightened brain plasticity, but little is known about the genetic regulation of this developmental process. The primary auditory cortex (A1) of mice exhibits a critical period for thalamocortical connectivity between postnatal days P12 and P15, during which tone exposure alters the tonotopic topography of A1. We hypothesized that a coordinated, multicellular transcriptional program governs this window for patterning of the auditory cortex. To generate a robust multicellular map of gene expression, we performed droplet-based, single-nucleus RNA sequencing (snRNA-seq) of A1 across three developmental time points (P10, P15, and P20) spanning the tonotopic critical period. We also tone-reared mice (7 kHz pips) during the 3-d critical period and collected A1 at P15 and P20. We identified and profiled both neuronal (glutamatergic and GABAergic) and nonneuronal (oligodendrocytes, microglia, astrocytes, and endothelial) cell types. By comparing normal- and tone-reared mice, we found hundreds of genes across cell types showing altered expression as a result of sensory manipulation during the critical period. Functional voltage-sensitive dye imaging confirmed GABA circuit function determines critical period onset, while Nogo receptor signaling is required for its closure. We further uncovered previously unknown effects of developmental tone exposure on trajectories of gene expression in interneurons, as well as candidate genes that might execute tonotopic plasticity. Our single-nucleus transcriptomic resource of developing auditory cortex is thus a powerful discovery platform with which to identify mediators of tonotopic plasticity.


Assuntos
Córtex Auditivo , Núcleo Celular/metabolismo , RNA , Análise de Célula Única/métodos , Transcriptoma/genética , Animais , Córtex Auditivo/crescimento & desenvolvimento , Córtex Auditivo/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , Camundongos , Receptores Nogo/genética , Receptores Nogo/metabolismo , RNA/análise , RNA/genética , RNA/metabolismo , Análise de Sequência de RNA/métodos
2.
Cereb Cortex ; 30(4): 2586-2599, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-31800018

RESUMO

Neuronal circuits are shaped by experience during time windows of increased plasticity in postnatal development. In the auditory system, the critical period for the simplest sounds-pure frequency tones-is well defined. Critical periods for more complex sounds remain to be elucidated. We used in vivo electrophysiological recordings in the mouse auditory cortex to demonstrate that passive exposure to frequency modulated sweeps (FMS) from postnatal day 31 to 38 leads to long-term changes in the temporal representation of sweep directions. Immunohistochemical analysis revealed a decreased percentage of layer 4 parvalbumin-positive (PV+) cells during this critical period, paralleled with a transient increase in responses to FMS, but not to pure tones. Preventing the PV+ cell decrease with continuous white noise exposure delayed the critical period onset, suggesting a reduction in inhibition as a mechanism for this plasticity. Our findings shed new light on the dependence of plastic windows on stimulus complexity that persistently sculpt the functional organization of the auditory cortex.


Assuntos
Estimulação Acústica/métodos , Córtex Auditivo/fisiologia , Vias Auditivas/fisiologia , Período Crítico Psicológico , Potenciais Evocados Auditivos/fisiologia , Som , Fatores Etários , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL
3.
Front Behav Neurosci ; 7: 88, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23898245

RESUMO

Autism is a neurodevelopmental condition diagnosed by impaired social interaction, abnormal communication and, stereotyped behaviors. While post-mortem and imaging studies have provided good insights into the neurobiological symptomology of autism, animal models can be used to study the neuroanatomical, neurophysiological and molecular mediators in more detail and in a more controlled environment. The valproic acid (VPA) rat model is an environmentally triggered model with strong construct and clinical validity. It is based on VPA teratogenicity in humans, where mothers who are medicated with VPA during early pregnancy show an increased risk for giving birth to an autistic child. In rats, early embryonic exposure, around the time of neural tube closure, leads to autism-like anatomical and behavioral abnormalities in the offspring. Considering the increasing use of the VPA rat model, we present our observations of the general health of Wistar dams treated with a single intraperitoneal injection of 500 or, 600 mg/kg VPA on embryonic day E12.5, as well as their male and female offspring, in comparison to saline-exposed controls. We report increased rates of complete fetal reabsorption after both VPA doses. VPA 500 mg/kg showed no effect on dam body weight during pregnancy or, on litter size. Offspring exposed to VPA 500 mg/kg showed smaller brain mass on postnatal days 1 (P1) and 14 (P14), in addition to abnormal nest seeking behavior at P10 in the olfactory discrimination test, relative to controls. We also report increased rates of physical malformations in the offspring, rare occurrences of chromodacryorrhea and, developmentally similar body mass gain. Further documentation of developmental health may guide sub-grouping of individuals in a way to better predict core symptom severity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA