Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 312
Filtrar
1.
Magn Reson Med ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38469953

RESUMO

PURPOSE: To investigate the feasibility of downfield MR spectroscopic imaging (DF-MRSI) in the human brain at 7T. METHODS: A 7T DF-MRSI pulse sequence was implemented based on the previously described methodology at 3T, with 3D phase-encoding, 1 3 ‾ 3 1 ‾ $$ 1\overline{3}3\overline{1} $$ spectral-spatial excitation, and frequency selective refocusing. Data were pre-processed followed by analysis using the "LCModel" software package, and metabolite maps created from the LCModel results. Total scan time, including brain MRI and a water-reference MRSI, was 24 min. The sequence was tested in 10 normal volunteers. Estimated metabolite levels and uncertainty values (Cramer Rao lower bounds, CRLBs) for nine downfield peaks were compared between seven different brain regions, anterior cingulate cortex (ACC), centrum semiovale (CSO), corpus callosum (CC), cerebellar vermis (CV), dorsolateral prefrontal cortex (DLPFC), posterior cingulate cortex (PCC), and thalamus (Thal). RESULTS: DF peaks were relatively uniformly distributed throughout the brain, with only a small number of peaks showing any significant regional variations. Most DF peaks had average CRLB<25% in most brain regions. Average SNR values were higher for the brain regions ACC and DLPFC (˜7 ± 0.95, mean ± SD) while in a range of 3.4-6.0 for other brain regions. Average linewidth (FWHM) values were greater than 35 Hz in the ACC, CV, and Thal, and 22 Hz in CC, CSO, DLPFC, and PCC. CONCLUSION: High-field DF-MRSI is able to spatially map exchangeable protons in the human brain at high resolution and with near whole-brain coverage in acceptable scan times, and in the future may be used to study metabolism of brain tumors or other neuropathological disorders.

2.
Schizophrenia (Heidelb) ; 10(1): 29, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429320

RESUMO

Understanding the biological underpinning of relapse could improve the outcomes of patients with psychosis. Relapse is elicited by multiple reasons/triggers, but the consequence frequently accompanies deteriorations of brain function, leading to poor prognosis. Structural brain imaging studies have recently been pioneered to address this question, but a lack of molecular investigations is a knowledge gap. Following a criterion used for recent publications by others, we defined the experiences of relapse by hospitalization(s) due to psychotic exacerbation. We hypothesized that relapse-associated molecules might be underscored from the neurometabolites whose levels have been different between overall patients with early-stage psychosis and healthy subjects in our previous report. In the present study, we observed a significant decrease in the levels of N-acetyl aspartate in the anterior cingulate cortex and thalamus in patients who experienced relapse compared to patients who did not. Altogether, decreased N-acetyl aspartate levels may indicate relapse-associated deterioration of neuronal networks in patients.

3.
Materials (Basel) ; 17(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38473547

RESUMO

Organically coated steels are widely used in applications in which they are subjected to the natural environment and therefore require excellent corrosion resistance. Organic clearcoats are typically employed as a barrier that improves the overall corrosion resistance; however, they are typically derived from fossil fuel-based feedstock. A more sustainable alternative could be possible using sol-gel coatings. The application of a simple tetraethoxysilane (TEOS)-based sol-gel was applied to polyurethane-coated steels using a spray coater. The concentration of TEOS was altered to produce coatings containing either 2.5% or 10%. The 10% TEOS resulted in dense, homogeneous coatings that offered a significant improvement in corrosion resistance compared to an uncoated substrate. Whereas the 2.5% TEOS coatings were inhomogeneous and porous, which indicated a limitation of concentration required to produce a uniform coating. The successful demonstration of using a simple TEOS-based coating to improve the corrosion resistance of organically coated steel highlights the potential for further investigation into the use of sol-gels for these applications.

4.
AIDS ; 38(7): 1003-1011, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38411600

RESUMO

OBJECTIVES: Cognitive impairment persists in virally suppressed people with HIV (VS-PWH) especially in higher order domains. One cortical circuit, linked to these domains, is regulated by N -acetyl-aspartyl glutamate (NAAG), the endogenous agonist of the metabotropic glutamate receptor 3. The enzyme glutamate carboxypeptidase II (GCPII) catabolizes NAAG and is upregulated in aging and disease. Inhibition of GCPII increases brain NAAG and improves learning and memory in rodent and primate models. DESIGN: As higher order cognitive impairment is present in VS-PWH, and NAAG has not been investigated in earlier magnetic resonance spectroscopy studies (MRS), we investigated if brain NAAG levels measured by MRS were associated with cognitive function. METHODS: We conducted a retrospective analysis of 7-Tesla MRS data from a previously published study on cognition in older VS-PWH. The original study did not separately quantify NAAG, therefore, work for this report focused on relationships between regional NAAG levels in frontal white matter (FWM), left hippocampus, left basal ganglia and domain-specific cognitive performance in 40 VS-PWH after adjusting for confounds. Participants were older than 50 years, negative for affective and neurologic disorders, and had no prior 3-month psychoactive-substance use. RESULTS: Higher NAAG levels in FWM were associated with better attention/working memory. Higher left basal ganglia NAAG related to better verbal fluency. There was a positive relationship between hippocampal NAAG and executive function which lost significance after correction for confounds. CONCLUSION: These data suggest brain NAAG serves as a biomarker of cognition in VS-PWH. Pharmacological modulation of brain NAAG warrants investigation as a therapeutic approach for cognitive deficits in VS-PWH.


Assuntos
Encéfalo , Dipeptídeos , Infecções por HIV , Humanos , Masculino , Pessoa de Meia-Idade , Feminino , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico , Infecções por HIV/psicologia , Estudos Retrospectivos , Encéfalo/metabolismo , Idoso , Espectroscopia de Ressonância Magnética , Cognição , Disfunção Cognitiva/metabolismo , Resposta Viral Sustentada
5.
Nat Med ; 29(11): 2902-2908, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37789144

RESUMO

Previous studies showed a low-grade enterovirus infection in the pancreatic islets of patients with newly diagnosed type 1 diabetes (T1D). In the Diabetes Virus Detection (DiViD) Intervention, a phase 2, placebo-controlled, randomized, parallel group, double-blind trial, 96 children and adolescents (aged 6-15 years) with new-onset T1D received antiviral treatment with pleconaril and ribavirin (n = 47) or placebo (n = 49) for 6 months, with the aim of preserving ß cell function. The primary endpoint was the mean stimulated C-peptide area under the curve (AUC) 12 months after the initiation of treatment (less than 3 weeks after diagnosis) using a mixed linear model. The model used longitudinal log-transformed serum C-peptide AUCs at baseline, at 3 months, 6 months and 1 year. The primary endpoint was met with the serum C-peptide AUC being higher in the pleconaril and ribavirin treatment group compared to the placebo group at 12 months (average marginal effect = 0.057 in the linear mixed model; 95% confidence interval = 0.004-0.11, P = 0.037). The treatment was well tolerated. The results show that antiviral treatment may preserve residual insulin production in children and adolescent with new-onset T1D. This provides a rationale for further evaluating antiviral strategies in the prevention and treatment of T1D. European Union Drug Regulating Authorities Clinical Trials identifier: 2015-003350-41 .


Assuntos
Diabetes Mellitus Tipo 1 , Criança , Adolescente , Humanos , Diabetes Mellitus Tipo 1/tratamento farmacológico , Ribavirina/uso terapêutico , Peptídeo C , Método Duplo-Cego , Antivirais/uso terapêutico
6.
Cancers (Basel) ; 15(17)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37686587

RESUMO

PURPOSE: To investigate the use of 3D downfield proton magnetic resonance spectroscopic imaging (DF-MRSI) for evaluation of tumor recurrence in patients with glioblastoma (GBM). METHODS: Seven patients (4F, age range 44-65 and mean ± standard deviation 59.3 ± 7.5 years) with previously treated GBM were scanned using a recently developed 3D DF-MRSI sequence at 3T. Short TE 3D DF-MRSI and water reference 3D-MRSI scans were collected with a nominal spatial resolution of 0.7 cm3. DF volume data in eight slices covered 12 cm of brain in the cranio-caudal axis. Data were analyzed using the 'LCModel' program and a basis set containing nine peaks ranging in frequency between 6.83 to 8.49 ppm. The DF8.18 (assigned to amides) and DF7.90 peaks were selected for the creation of metabolic images and statistical analysis. Longitudinal MR images and clinical history were used to classify brain lesions as either recurrent tumor or treatment effect, which may include necrosis. DF-MRSI data were compared between lesion groups (recurrent tumor, treatment effect) and normal-appearing brain. RESULTS: Of the seven brain tumor patients, two were classified as having recurrent tumor and the rest were classified as treatment effect. Amide metabolite levels from recurrent tumor regions were significantly (p < 0.05) higher compared to both normal-appearing brain and treatment effect regions. Amide levels in lesion voxels classified as treatment effect were significantly lower than normal brain. CONCLUSIONS: 3D DF-MRSI in human brain tumors at 3T is feasible and was well tolerated by all patients enrolled in this preliminary study. Amide levels measured by 3D DF-MRSI were significantly different between treatment effect and tumor regrowth.

7.
Diabet Med ; 40(11): e15194, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37562398

RESUMO

AIMS: Anti-insulin antibodies in insulin-treated diabetes can derange glycaemia, but are under-recognised. Detection of significant antibodies is complicated by antigenically distinct insulin analogues. We evaluated a pragmatic biochemical approach to identifying actionable antibodies, and assessed its utility in therapeutic decision making. METHODS: Forty people with insulin-treated diabetes and combinations of insulin resistance, nocturnal/matutinal hypoglycaemia, and unexplained ketoacidosis were studied using broad-specificity insulin immunoassays, polyethylene glycol (PEG) precipitation and gel filtration chromatography (GFC) with or without ex vivo insulin preincubation. RESULTS: Twenty-seven people had insulin immunoreactivity (IIR) below 3000 pmol/L that fell less than 50% after PEG precipitation. Insulin binding by antibodies in this group was low and judged insignificant. In 8 people IIR was above 3000 pmol/L and fell by more than 50% after PEG precipitation. GFC demonstrated substantial high molecular weight (HMW) IIR in 7 of these 8. In this group antibodies were judged likely significant. In 2 people immunosuppression was introduced, with a good clinical result in one but only a biochemical response in another. In 6 people adjustment of insulin delivery was subsequently informed by knowledge of underlying antibody. In a final group of 5 participants IIR was below 3000 pmol/L but fell by more than 50% after PEG precipitation. In 4 of these GFC demonstrated low levels of HMW IIR and antibody significance was judged indeterminate. CONCLUSIONS: Anti-insulin antibodies should be considered in insulin-treated diabetes with unexplained glycaemic lability. Combining immunoassays with PEG precipitation can stratify their significance. Antibody depletion may be beneficial, but conservative measures often suffice.


Assuntos
Diabetes Mellitus , Hiperinsulinismo , Hipoglicemia , Resistência à Insulina , Humanos , Insulina/uso terapêutico , Anticorpos Anti-Insulina , Hipoglicemia/induzido quimicamente
8.
Cancers (Basel) ; 15(13)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37444634

RESUMO

Despite aggressive treatment, glioblastoma has a poor prognosis due to its infiltrative nature. Spectroscopic MRI-measured brain metabolites, particularly the choline to N-acetylaspartate ratio (Cho/NAA), better characterizes the extent of tumor infiltration. In a previous pilot trial (NCT03137888), brain regions with Cho/NAA ≥ 2x normal were treated with high-dose radiation for newly diagnosed glioblastoma patients. This report is a secondary analysis of that trial where spectroscopic MRI-based biomarkers are evaluated for how they correlate with progression-free and overall survival (PFS/OS). Subgroups were created within the cohort based on pre-radiation treatment (pre-RT) median cutoff volumes of residual enhancement (2.1 cc) and metabolically abnormal volumes used for treatment (19.2 cc). We generated Kaplan-Meier PFS/OS curves and compared these curves via the log-rank test between subgroups. For the subgroups stratified by metabolic abnormality, statistically significant differences were observed for PFS (p = 0.019) and OS (p = 0.020). Stratification by residual enhancement did not lead to observable differences in the OS (p = 0.373) or PFS (p = 0.286) curves. This retrospective analysis shows that patients with lower post-surgical Cho/NAA volumes had significantly superior survival outcomes, while residual enhancement, which guides high-dose radiation in standard treatment, had little significance in PFS/OS. This suggests that the infiltrating, non-enhancing component of glioblastoma is an important factor in patient outcomes and should be treated accordingly.

9.
Acta Diabetol ; 60(12): 1635-1642, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37439859

RESUMO

AIMS: Incretin hormones glucagon-like peptide 1 (GLP-1) and gastric inhibitory peptide (GIP) cause increased insulin secretion in non-pregnant adults, but their role in pregnancy, where there are additional metabolically-active hormones from the placenta, is less clear. The aim of the present study was to assess if fasting and post-load incretin concentrations were predictive of pregnancy insulin and glucose concentrations. METHODS: Pregnant women (n = 394) with one or more risk factors for gestational diabetes were recruited at 28 weeks for a 75 g oral glucose tolerance test (OGTT). Glucose, insulin, GLP-1 and GIP were measured in the fasting state and 120 min after glucose ingestion. RESULTS: Fasting plasma GLP-1 concentrations were associated with plasma insulin (standardised ß' 0.393 (0.289-0.498), p = 1.3 × 10-12; n = 306), but not with glucose concentrations (p = 0.3). The association with insulin was still evident when adjusting for BMI (ß' 0.271 (0.180-0.362), p = 1.1 × 10-8; n = 297). Likewise, at 120 min the OGTT GLP-1 concentrations were associated with plasma insulin concentrations (ß' 0.216 (0.100-0.331), p = 2.7 × 10-4; n = 306) even after adjusting for BMI (ß' 0.178 (0.061-0.294), p = 2.9 × 10-3; n = 296), but not with glucose (p = 0.9). GIP concentrations were not associated with insulin or glucose concentrations at either time point (all p > 0.2). In pregnancy plasma GLP-1, but not GIP, concentrations appear to be predictive of circulating insulin concentrations, independently of associations with BMIs. CONCLUSIONS: These results suggest that the relationship between insulin and incretins is preserved in pregnancy, but that other factors, such as placental hormones or counter-regulatory hormones, may be more important determinants of glycaemia and gestational diabetes aetiology.


Assuntos
Diabetes Mellitus Tipo 2 , Diabetes Gestacional , Adulto , Feminino , Humanos , Gravidez , Insulina , Peptídeo 1 Semelhante ao Glucagon , Incretinas , Glicemia , Placenta , Glucose , Polipeptídeo Inibidor Gástrico
10.
Magn Reson Med ; 90(3): 814-822, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37249071

RESUMO

PURPOSE: To develop a 3D downfield (DF) MRSI protocol with whole brain coverage and post-processing pipeline for creation of metabolite maps. METHODS: A 3D, circularly phase-encoded version of the previously developed 2D DF MRSI sequence with 1 3 ‾ 3 1 ‾ $$ 1\overline{3}3\overline{1} $$ spectral-spatial excitation and frequency selective refocusing was implemented and tested in five healthy volunteers at 3T. The DF metabolite maps with a nominal spatial resolution of 0.7 cm3 were recorded in eight slices at 3T in a scan time of 22 m 40 s. An MRSI post-processing pipeline was developed to create DF metabolite maps. Metabolite concentrations and uncertainty estimates were compared between region differences for nine DF peaks. RESULTS: LCModel analysis showed Cramer Rao lower bounds average values of 3%-4% for protein amide resonances in the three selected regions (anterior cingulate, dorsolateral prefrontal cortex, and centrum semiovale); Cramer Rao lower bounds were somewhat higher for individual peaks but for the most part were less than 20%. While DF concentration maps were visually quite homogeneous throughout the brain, general linear regression analysis corrected for multiple comparisons found significant differences between centrum semiovale and dorsolateral prefrontal cortex for peaks at 7.09 ppm (p = 0.014), 7.90 ppm (p = 0.009), 8.18 ppm (p = 0.009), combined amides (p = 0.009), and between anterior cingulate and dorsolateral prefrontal cortex for the 7.30 ppm peak (p = 0.020). Cramer Rao lower bounds values were not significantly different between brain regions for any of the DF peaks. CONCLUSION: The 3D DF MRSI of the human brain at 3T with wide spatial coverage for the mapping of exchangeable amide and other resonances is feasible at a nominal spatial resolution of 0.7 cm3 .


Assuntos
Encéfalo , Prótons , Humanos , Espectroscopia de Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Mapeamento Encefálico/métodos , Corpo Caloso , Imageamento por Ressonância Magnética/métodos
11.
Tomography ; 9(3): 1052-1061, 2023 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-37218946

RESUMO

Accurate radiation therapy (RT) targeting is crucial for glioblastoma treatment but may be challenging using clinical imaging alone due to the infiltrative nature of glioblastomas. Precise targeting by whole-brain spectroscopic MRI, which maps tumor metabolites including choline (Cho) and N-acetylaspartate (NAA), can quantify early treatment-induced molecular changes that other traditional modalities cannot measure. We developed a pipeline to determine how spectroscopic MRI changes during early RT are associated with patient outcomes to provide insight into the utility of adaptive RT planning. Data were obtained from a study (NCT03137888) where glioblastoma patients received high-dose RT guided by the pre-RT Cho/NAA twice normal (Cho/NAA ≥ 2x) volume, and received spectroscopic MRI scans pre- and mid-RT. Overlap statistics between pre- and mid-RT scans were used to quantify metabolic activity changes after two weeks of RT. Log-rank tests were used to quantify the relationship between imaging metrics and patient overall and progression-free survival (OS/PFS). Patients with lower Jaccard/Dice coefficients had longer PFS (p = 0.045 for both), and patients with lower Jaccard/Dice coefficients had higher OS trending towards significance (p = 0.060 for both). Cho/NAA ≥ 2x volumes changed significantly during early RT, putting healthy tissue at risk of irradiation, and warranting further study into using adaptive RT planning.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/diagnóstico por imagem , Glioblastoma/radioterapia , Glioblastoma/tratamento farmacológico , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Planejamento da Radioterapia Assistida por Computador
12.
Neurol Genet ; 9(2): e200061, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37090939

RESUMO

Background and Objectives: There are no therapies for preventing cerebral demyelination in X-linked adrenoleukodystrophy (ALD). Higher plasma vitamin D levels have been linked to lower risk of inflammatory brain lesions. We assessed the safety and pharmacokinetics of oral vitamin D dosing regimens in boys and young men with ALD. Methods: In this open-label, multicenter, phase 1 study, we recruited boys and young men with ALD without brain lesions to a 12-month study of daily oral vitamin D3 supplementation. Our primary outcome was attainment of plasma 25-hydroxyvitamin D levels in target range (40-80 ng/mL) at 6 and 12 months. Secondary outcomes included safety and glutathione levels in the brain, measured with magnetic resonance spectroscopy, and blood, measured via mass spectrometry. Participants were initially assigned to a fixed dosing regimen starting at 2,000 IU daily, regardless of weight. After a midstudy safety assessment, we modified the dosing regimen, so all subsequent participants were assigned to a weight-stratified dosing regimen starting as low as 1,000 IU daily. Results: Between October 2016 and June 2019, we enrolled 21 participants (n = 12, fixed-dose regimen; n = 9, weight-stratified regimen) with a median age of 6.7 years (range: 1.9-22 years) and median weight of 20 kg (range: 11.7-85.5 kg). The number of participants achieving target vitamin D levels was similar in both groups at 6 months (fixed dose: 92%; weight stratified: 78%) and 12 months (fixed dose: 67%; weight stratified: 67%). Among the 12 participants in the fixed-dose regimen, half had asymptomatic elevations in either urine calcium:creatinine or plasma 25-hydroxyvitamin D; no laboratory deviations occurred with the weight-stratified regimen. Glutathione levels in the brain, but not the blood, increased significantly between baseline and 12 months. Discussion: Our vitamin D dosing regimens were well tolerated and achieved target 25-hydroxyvitamin D levels in most participants. Brain glutathione levels warrant further study as a biomarker for vitamin D and ALD. Classification of Evidence: This study provides Class IV evidence that fixed or weight-stratified vitamin D supplementation achieved target levels of 25-hydroxyvitamin D in boys and young men with X-ALD without brain lesions.

13.
Front Oncol ; 13: 1077461, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37007074

RESUMO

The adverse effects of lactic acidosis in the cancer microenvironment have been increasingly recognized. Dichloroacetate (DCA) is an orally bioavailable, blood brain barrier penetrable drug that has been extensively studied in the treatment of mitochondrial neurologic conditions to reduce lactate production. Due to its effect reversing aerobic glycolysis (i.e., Warburg-effect) and thus lactic acidosis, DCA became a drug of interest in cancer as well. Magnetic resonance spectroscopy (MRS) is a well-established, non-invasive technique that allows detection of prominent metabolic changes, such as shifts in lactate or glutamate levels. Thus, MRS is a potential radiographic biomarker to allow spatial and temporal mapping of DCA treatment. In this systematic literature review, we gathered the available evidence on the use of various MRS techniques to track metabolic changes after DCA administration in neurologic and oncologic disorders. We included in vitro, animal, and human studies. Evidence confirms that DCA has substantial effects on lactate and glutamate levels in neurologic and oncologic disease, which are detectable by both experimental and routine clinical MRS approaches. Data from mitochondrial diseases show slower lactate changes in the central nervous system (CNS) that correlate better with clinical function compared to blood. This difference is most striking in focal impairments of lactate metabolism suggesting that MRS might provide data not captured by solely monitoring blood. In summary, our findings corroborate the feasibility of MRS as a pharmacokinetic/pharmacodynamic biomarker of DCA delivery in the CNS, that is ready to be integrated into currently ongoing and future human clinical trials using DCA.

14.
bioRxiv ; 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36747802

RESUMO

Purpose: To develop a 3D downfield magnetic resonance spectroscopic imaging (DF-MRSI) protocol with whole brain coverage and post-processing pipeline for creation of metabolite maps. Methods: A 3D, circularly phase-encoded version of the previously developed 2D DF-MRSI sequence with spectral-spatial excitation and frequency selective refocusing was implemented and tested in 5 healthy volunteers at 3T. Downfield metabolite maps with a nominal spatial resolution of 0.7 cm 3 were recorded in 8 slices at 3T in a scan time of 22m 40s. An MRSI post-processing pipeline was developed to create DF metabolite maps. Metabolite concentrations and uncertainty estimates were compared between region differences for nine downfield peaks. Results: LCModel analysis showed CRLB average values of 3-4% for protein amide resonances in the three selected regions (anterior cingulate (ACC), dorsolateral prefrontal cortex (DLPFC), and centrum semiovale (CSO)); CRLBs were somewhat higher for individual peaks but for the most part were less than 20%. While DF concentration maps were visually quite homogeneous throughout the brain, general linear regression analysis corrected for multiple comparisons found significant differences between CSO and DLPFC for peaks at 7.09 ppm (p= 0.014), 7.90 ppm (p=0.009), 8.18 ppm (p=0.009), combined amides (p=0.009), and between ACC and DLPFC for the 7.30 ppm peak (p=0.020). CRLB values were not significantly different between brain regions for any of the DF peaks. Conclusion: 3D DF-MRSI of the human brain at 3T with wide spatial coverage for the mapping of exchangeable amide and other resonances is feasible at a nominal spatial resolution of 0.7 cm 3 .

15.
Mol Psychiatry ; 28(5): 2018-2029, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36732587

RESUMO

Seven Tesla magnetic resonance spectroscopy (7T MRS) offers a precise measurement of metabolic levels in the human brain via a non-invasive approach. Studying longitudinal changes in brain metabolites could help evaluate the characteristics of disease over time. This approach may also shed light on how the age of study participants and duration of illness may influence these metabolites. This study used 7T MRS to investigate longitudinal patterns of brain metabolites in young adulthood in both healthy controls and patients. A four-year longitudinal cohort with 38 patients with first episode psychosis (onset within 2 years) and 48 healthy controls was used to examine 10 brain metabolites in 5 brain regions associated with the pathophysiology of psychosis in a comprehensive manner. Both patients and controls were found to have significant longitudinal reductions in glutamate in the anterior cingulate cortex (ACC). Only patients were found to have a significant decrease over time in γ-aminobutyric acid, N-acetyl aspartate, myo-inositol, total choline, and total creatine in the ACC. Together we highlight the ACC with dynamic changes in several metabolites in early-stage psychosis, in contrast to the other 4 brain regions that also are known to play roles in psychosis. Meanwhile, glutathione was uniquely found to have a near zero annual percentage change in both patients and controls in all 5 brain regions during a four-year follow-up in young adulthood. Given that a reduction of the glutathione in the ACC has been reported as a feature of treatment-refractory psychosis, this observation further supports the potential of glutathione as a biomarker for this subset of patients with psychosis.


Assuntos
Glutamina , Transtornos Psicóticos , Humanos , Adulto Jovem , Adulto , Glutamina/metabolismo , Transtornos Psicóticos/metabolismo , Encéfalo/metabolismo , Ácido Glutâmico/metabolismo , Giro do Cíngulo/metabolismo , Ácido Aspártico/metabolismo , Glutationa/metabolismo
16.
Tomography ; 9(1): 362-374, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36828381

RESUMO

Glioblastoma (GBM) is a fatal disease, with poor prognosis exacerbated by difficulty in assessing tumor extent with imaging. Spectroscopic MRI (sMRI) is a non-contrast imaging technique measuring endogenous metabolite levels of the brain that can serve as biomarkers for tumor extension. We completed a three-site study to assess survival benefits of GBM patients when treated with escalated radiation dose guided by metabolic abnormalities in sMRI. Escalated radiation led to complex post-treatment imaging, requiring unique approaches to discern tumor progression from radiation-related treatment effect through our quantitative imaging platform. The purpose of this study is to determine true tumor recurrence timepoints for patients in our dose-escalation multisite study using novel methodology and to report on median progression-free survival (PFS). Follow-up imaging for all 30 trial patients were collected, lesion volumes segmented and graphed, and imaging uploaded to our platform for visual interpretation. Eighteen months post-enrollment, the median PFS was 16.6 months with a median time to follow-up of 20.3 months. With this new treatment paradigm, incidence rate of tumor recurrence one year from treatment is 30% compared to 60-70% failure under standard care. Based on the delayed tumor progression and improved survival, a randomized phase II trial is under development (EAF211).


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Recidiva Local de Neoplasia , Doses de Radiação
17.
Clin Endocrinol (Oxf) ; 99(2): 182-189, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36806122

RESUMO

OBJECTIVE: GDF15 has emerged as a stress-induced hormone, acting on the brain to reduce food intake and body weight while affecting neuroendocrine function. Very high GDF15 levels are found in thalassaemia, where growth, energy balance and neuroendocrine function are impaired. We examined the relationships between GDF15 and anthropometric measures and endocrine status in ß-thalassaemia. DESIGN: Cross sectional study. PATIENTS: All ß-thalassaemia patients attending the thalassaemia unit of Colombo North Teaching Hospital for blood transfusions. MEASUREMENTS: Anthropometric data, appetite scores, circulating GDF15, IGF, thyroid and reproductive hormone levels in 103 ß-thalassaemia patients were obtained. RESULTS: GDF15 levels were markedly elevated in thalassaemia patients (24.2-fold with ß-thalassaemia major compared with healthy controls). Among patients with ß-thalassaemia major, the relationship between GDF15 and body mass index (BMI) was curvilinear with all individuals with GDF15 levels above 24,000 pg/mL having a BMI below 20 kg/m2 . After adjustment for BMI, age and Tanner stage, serum IGF1 concentrations correlated negatively with GDF15 in all thalassaemia patients (ß = -.027, p = .02). We found a significant positive relationship between GDF15 and gonadotropin (in both sexes) and testosterone (in males). CONCLUSIONS: GDF15 levels were markedly elevated in patients with ß-thalassaemia and its association with BMI is consistent with the known effect of GDF15 to reduce body weight. The inverse association between GDF15 with IGF1 levels may reflect a neuroendocrine impact of GDF15 or an indirect effect via impaired nutritional state. The positive association with testosterone in males and gonadotropins in both sexes, was surprising and should prompt further GDF15 studies on the hypothalamic pituitary gonadal axis.


Assuntos
Talassemia beta , Masculino , Feminino , Humanos , Índice de Massa Corporal , Talassemia beta/complicações , Estudos Transversais , Testosterona , Gonadotropinas , Peso Corporal , Fator 15 de Diferenciação de Crescimento
18.
Ann Neurol ; 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36511514

RESUMO

OBJECTIVE: This study was undertaken to identify magnetic resonance (MR) metrics that are most sensitive to early changes in the brain in spinocerebellar ataxia type 1 (SCA1) and type 3 (SCA3) using an advanced multimodal MR imaging (MRI) protocol in the multisite trial setting. METHODS: SCA1 or SCA3 mutation carriers and controls (n = 107) underwent MR scanning in the US-European READISCA study to obtain structural, diffusion MRI, and MR spectroscopy data using an advanced protocol at 3T. Morphometric, microstructural, and neurochemical metrics were analyzed blinded to diagnosis and compared between preataxic SCA (n = 11 SCA1, n = 28 SCA3), ataxic SCA (n = 14 SCA1, n = 37 SCA3), and control (n = 17) groups using nonparametric testing accounting for multiple comparisons. MR metrics that were most sensitive to preataxic abnormalities were identified using receiver operating characteristic (ROC) analyses. RESULTS: Atrophy and microstructural damage in the brainstem and cerebellar peduncles and neurochemical abnormalities in the pons were prominent in both preataxic groups, when patients did not differ from controls clinically. MR metrics were strongly associated with ataxia symptoms, activities of daily living, and estimated ataxia duration. A neurochemical measure was the most sensitive metric to preataxic changes in SCA1 (ROC area under the curve [AUC] = 0.95), and a microstructural metric was the most sensitive metric to preataxic changes in SCA3 (AUC = 0.92). INTERPRETATION: Changes in cerebellar afferent and efferent pathways underlie the earliest symptoms of both SCAs. MR metrics collected with a harmonized advanced protocol in the multisite trial setting allow detection of disease effects in individuals before ataxia onset with potential clinical trial utility for subject stratification. ANN NEUROL 2022.

19.
Front Neurosci ; 16: 1042814, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36458043

RESUMO

In this review article we have consolidated the imaging literature of patients with schizophrenia across the full spectrum of modalities in radiology including computed tomography (CT), morphologic magnetic resonance imaging (MRI), functional magnetic resonance imaging (fMRI), magnetic resonance spectroscopy (MRS), positron emission tomography (PET), and magnetoencephalography (MEG). We look at the impact of various subtypes of schizophrenia on imaging findings and the changes that occur with medical and transcranial magnetic stimulation (TMS) therapy. Our goal was a comprehensive multimodality summary of the findings of state-of-the-art imaging in untreated and treated patients with schizophrenia. Clinical imaging in schizophrenia is used to exclude structural lesions which may produce symptoms that may mimic those of patients with schizophrenia. Nonetheless one finds global volume loss in the brains of patients with schizophrenia with associated increased cerebrospinal fluid (CSF) volume and decreased gray matter volume. These features may be influenced by the duration of disease and or medication use. For functional studies, be they fluorodeoxyglucose positron emission tomography (FDG PET), rs-fMRI, task-based fMRI, diffusion tensor imaging (DTI) or MEG there generally is hypoactivation and disconnection between brain regions. However, these findings may vary depending upon the negative or positive symptomatology manifested in the patients. MR spectroscopy generally shows low N-acetylaspartate from neuronal loss and low glutamine (a neuroexcitatory marker) but glutathione may be elevated, particularly in non-treatment responders. The literature in schizophrenia is difficult to evaluate because age, gender, symptomatology, comorbidities, therapy use, disease duration, substance abuse, and coexisting other psychiatric disorders have not been adequately controlled for, even in large studies and meta-analyses.

20.
Front Physiol ; 13: 953199, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36091365

RESUMO

Background: Increased waist-to-hip ratio (WHR) is associated with increased mortality and risk of type 2 diabetes and cardiovascular disease. The TBX15-WARS2 locus has consistently been associated with increased WHR. Previous study of the hypomorphic Wars2 V117L/V117L mouse model found phenotypes including severely reduced fat mass, and white adipose tissue (WAT) browning, suggesting Wars2 could be a potential modulator of fat distribution and WAT browning. Methods: To test for differences in browning induction across different adipose depots of Wars2 V117L/V117L mice, we measured multiple browning markers of a 4-month old chow-fed cohort in subcutaneous and visceral WAT and brown adipose tissue (BAT). To explain previously observed fat mass loss, we also tested for the upregulation of plasma mitokines FGF21 and GDF15 and for differences in food intake in the same cohort. Finally, to test for diet-associated differences in fat distribution, we placed Wars2 V117L/V117L mice on low-fat or high-fat diet (LFD, HFD) and assessed their body composition by Echo-MRI and compared terminal adipose depot weights at 6 months of age. Results: The chow-fed Wars2 V117L/V117L mice showed more changes in WAT browning marker gene expression in the subcutaneous inguinal WAT depot (iWAT) than in the visceral gonadal WAT depot (gWAT). These mice also demonstrated reduced food intake and elevated plasma FGF21 and GDF15, and mRNA from heart and BAT. When exposed to HFD, the Wars2 V117L/V117L mice showed resistance to diet-induced obesity and a male and HFD-specific reduction of gWAT: iWAT ratio. Conclusion: Severe reduction of Wars2 gene function causes a systemic phenotype which leads to upregulation of FGF21 and GDF15, resulting in reduced food intake and depot-specific changes in browning and fat mass.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA