Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Transl Med ; 13(618): eabd7695, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34731014

RESUMO

Recent increases in human longevity have been accompanied by a rise in the incidence of dementia, highlighting the need to preserve cognitive function in an aging population. A small percentage of individuals with pathological hallmarks of neurodegenerative disease are able to maintain normal cognition. Although the molecular mechanisms that govern this neuroprotection remain unknown, individuals that exhibit cognitive resilience (CgR) represent a unique source of therapeutic insight. For both humans and animal models, living in an enriched, cognitively stimulating environment is the most effective known inducer of CgR. To understand potential drivers of this phenomenon, we began by profiling the molecular changes that arise from environmental enrichment in mice, which led to the identification of MEF2 transcription factors (TFs). We next turned to repositories of human clinical and brain transcriptomic data, where we found that the MEF2 transcriptional network was overrepresented among genes that are most predictive of end-stage cognition. Through single-nucleus RNA sequencing of cortical tissue from resilient and nonresilient individuals, we further confirmed up-regulation of MEF2C in resilient individuals to a subpopulation of excitatory neurons. Last, to determine the causal impact of MEF2 on cognition in the context of neurodegeneration, we overexpressed Mef2a/c in the PS19 mouse model of tauopathy and found that this was sufficient to improve cognitive flexibility and reduce hyperexcitability. Overall, our findings reveal a previously unappreciated role for MEF2 TFs in promoting CgR, highlighting their potential as biomarkers or therapeutic targets for neurodegeneration and healthy aging.


Assuntos
Fatores de Transcrição MEF2 , Doenças Neurodegenerativas , Animais , Encéfalo/metabolismo , Cognição/fisiologia , Redes Reguladoras de Genes , Humanos , Fatores de Transcrição MEF2/genética , Fatores de Transcrição MEF2/metabolismo , Camundongos , Doenças Neurodegenerativas/genética
2.
Cell ; 177(2): 256-271.e22, 2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30879788

RESUMO

We previously reported that inducing gamma oscillations with a non-invasive light flicker (gamma entrainment using sensory stimulus or GENUS) impacted pathology in the visual cortex of Alzheimer's disease mouse models. Here, we designed auditory tone stimulation that drove gamma frequency neural activity in auditory cortex (AC) and hippocampal CA1. Seven days of auditory GENUS improved spatial and recognition memory and reduced amyloid in AC and hippocampus of 5XFAD mice. Changes in activation responses were evident in microglia, astrocytes, and vasculature. Auditory GENUS also reduced phosphorylated tau in the P301S tauopathy model. Furthermore, combined auditory and visual GENUS, but not either alone, produced microglial-clustering responses, and decreased amyloid in medial prefrontal cortex. Whole brain analysis using SHIELD revealed widespread reduction of amyloid plaques throughout neocortex after multi-sensory GENUS. Thus, GENUS can be achieved through multiple sensory modalities with wide-ranging effects across multiple brain areas to improve cognitive function.


Assuntos
Estimulação Acústica/métodos , Doença de Alzheimer/terapia , Cognição/fisiologia , Doença de Alzheimer/patologia , Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Percepção Auditiva/fisiologia , Encéfalo/metabolismo , Modelos Animais de Doenças , Ritmo Gama/fisiologia , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Placa Amiloide/metabolismo
3.
J Neurosci ; 37(41): 9917-9924, 2017 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-28912154

RESUMO

Increased p25, a proteolytic fragment of the regulatory subunit p35, is known to induce aberrant activity of cyclin-dependent kinase 5 (Cdk5), which is associated with neurodegenerative disorders, including Alzheimer's disease. Previously, we showed that replacing endogenous p35 with the noncleavable mutant p35 (Δp35) attenuated amyloidosis and improved cognitive function in a familial Alzheimer's disease mouse model. Here, to address the role of p25/Cdk5 in tauopathy, we generated double-transgenic mice by crossing mice overexpressing mutant human tau (P301S) with Δp35KI mice. We observed significant reduction of phosphorylated tau and its seeding activity in the brain of double transgenic mice compared with the P301S mice. Furthermore, synaptic loss and impaired LTP at hippocampal CA3 region of P301S mice were attenuated by blocking p25 generation. To further validate the role of p25/Cdk5 in tauopathy, we used frontotemporal dementia patient-derived induced pluripotent stem cells (iPSCs) carrying the Tau P301L mutation and generated P301L:Δp35KI isogenic iPSC lines using CRISPR/Cas9 genome editing. We created cerebral organoids from the isogenic iPSCs and found that blockade of p25 generation reduced levels of phosphorylated tau and increased expression of synaptophysin. Together, these data demonstrate a crucial role for p25/Cdk5 in mediating tau-associated pathology and suggest that inhibition of this kinase can remedy neurodegenerative processes in the presence of pathogenic tau mutation.SIGNIFICANCE STATEMENT Accumulation of p25 results in aberrant Cdk5 activation and induction of numerous pathological phenotypes, such as neuroinflammation, synaptic loss, Aß accumulation, and tau hyperphosphorylation. However, it was not clear whether p25/Cdk5 activity is necessary for the progression of these pathological changes. We recently developed the Δp35KI transgenic mouse that is deficient in p25 generation and Cdk5 hyperactivation. In this study, we used this mouse model to elucidate the role of p25/Cdk5 in FTD mutant tau-mediated pathology. We also used a frontotemporal dementia patient-derived induced pluripotent stem cell carrying the Tau P301L mutation and generated isogenic lines in which p35 is replaced with noncleavable mutant Δp35. Our data suggest that p25/Cdk5 plays an important role in tauopathy in both mouse and human model systems.


Assuntos
Quinase 5 Dependente de Ciclina/genética , Demência Frontotemporal/genética , Fosfotransferases/genética , Células-Tronco Pluripotentes , Tauopatias/genética , Animais , Região CA3 Hipocampal/patologia , Região CA3 Hipocampal/fisiopatologia , Quinase 5 Dependente de Ciclina/antagonistas & inibidores , Demência Frontotemporal/prevenção & controle , Humanos , Potenciação de Longa Duração/genética , Camundongos , Camundongos Transgênicos , Fibras Musgosas Hipocampais/patologia , Fosforilação , Fosfotransferases/antagonistas & inibidores , Transplante de Células-Tronco , Sinapses/patologia , Sinaptofisina/genética , Tauopatias/prevenção & controle
4.
Neuron ; 94(2): 221-223, 2017 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-28426953

RESUMO

In this issue of Neuron, Weng et al. (2017) reveal a role for active DNA demethylation in allowing axon regeneration to occur in the mature nervous system following axonal injury.


Assuntos
Axônios/metabolismo , DNA/metabolismo , Regulação da Expressão Gênica/fisiologia , Regeneração Nervosa/fisiologia , Neurônios/metabolismo , Animais , Epigenômica/métodos , Humanos
5.
Neuron ; 82(6): 1271-88, 2014 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-24857020

RESUMO

Prion-like propagation of tau aggregation might underlie the stereotyped progression of neurodegenerative tauopathies. True prions stably maintain unique conformations ("strains") in vivo that link structure to patterns of pathology. We now find that tau meets this criterion. Stably expressed tau repeat domain indefinitely propagates distinct amyloid conformations in a clonal fashion in culture. Reintroduction of tau from these lines into naive cells reestablishes identical clones. We produced two strains in vitro that induce distinct pathologies in vivo as determined by successive inoculations into three generations of transgenic mice. Immunopurified tau from these mice recreates the original strains in culture. We used the cell system to isolate tau strains from 29 patients with 5 different tauopathies, finding that different diseases are associated with different sets of strains. Tau thus demonstrates essential characteristics of a prion. This might explain the phenotypic diversity of tauopathies and could enable more effective diagnosis and therapy.


Assuntos
Hipocampo/patologia , Doenças Neurodegenerativas/patologia , Príons/fisiologia , Tauopatias/patologia , Proteínas tau/fisiologia , Animais , Progressão da Doença , Células HEK293 , Hipocampo/fisiologia , Humanos , Camundongos , Camundongos Transgênicos , Placa Amiloide/patologia , Tauopatias/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA