Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Epilepsia ; 58 Suppl 3: 39-47, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28675559

RESUMO

Animal models have provided a wealth of information on mechanisms of epileptogenesis and comorbidogenesis, and have significantly advanced our ability to investigate the potential of new therapies. Processes implicating brain inflammation have been increasingly observed in epilepsy research. Herein we discuss the progress on animal models of epilepsy and comorbidities that inform us on the potential role of inflammation in epileptogenesis and comorbidity pathogenesis in rodent models of West syndrome and the Theiler's murine encephalomyelitis virus (TMEV) mouse model of viral encephalitis-induced epilepsy. Rat models of infantile spasms were generated in rat pups after right intracerebral injections of proinflammatory compounds (lipopolysaccharides with or without doxorubicin, or cytokines) and were longitudinally monitored for epileptic spasms and neurodevelopmental and cognitive deficits. Anti-inflammatory treatments were tested after the onset of spasms. The TMEV mouse model was induced with intracerebral administration of TMEV and prospective monitoring for handling-induced seizures or seizure susceptibility, as well as long-term evaluations of behavioral comorbidities of epilepsy. Inflammatory processes are evident in both models and are implicated in the pathogenesis of the observed seizures and comorbidities. A common feature of these models, based on the data so far available, is their pharmacoresistant profile. The presented data support the role of inflammatory pathways in epileptogenesis and comorbidities in two distinct epilepsy models. Pharmacoresistance is a common feature of both inflammation-based models. Utilization of these models may facilitate the identification of age-specific, syndrome- or etiology-specific therapies for the epilepsies and attendant comorbidities, including the drug-resistant forms.


Assuntos
Infecções por Cardiovirus/imunologia , Modelos Animais de Doenças , Epilepsia/imunologia , Inflamação Neurogênica/tratamento farmacológico , Espasmos Infantis/tratamento farmacológico , Espasmos Infantis/imunologia , Theilovirus , Pesquisa Translacional Biomédica , Animais , Anticonvulsivantes/uso terapêutico , Descoberta de Drogas , Epilepsia Resistente a Medicamentos/tratamento farmacológico , Epilepsia Resistente a Medicamentos/imunologia , Epilepsia/tratamento farmacológico , Humanos , Lactente , Mediadores da Inflamação/fisiologia , Camundongos , Inflamação Neurogênica/imunologia , Ratos
2.
Neurochem Res ; 42(7): 1904-1918, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28303498

RESUMO

The successful identification of promising investigational therapies for the treatment of epilepsy can be credited to the use of numerous animal models of seizure and epilepsy for over 80 years. In this time, the maximal electroshock test in mice and rats, the subcutaneous pentylenetetrazol test in mice and rats, and more recently the 6 Hz assay in mice, have been utilized as primary models of electrically or chemically-evoked seizures in neurologically intact rodents. In addition, rodent kindling models, in which chronic network hyperexcitability has developed, have been used to identify new agents. It is clear that this traditional screening approach has greatly expanded the number of marketed drugs available to manage the symptomatic seizures associated with epilepsy. In spite of the numerous antiseizure drugs (ASDs) on the market today, the fact remains that nearly 30% of patients are resistant to these currently available medications. To address this unmet medical need, the National Institute of Neurological Disorders and Stroke (NINDS) Epilepsy Therapy Screening Program (ETSP) revised its approach to the early evaluation of investigational agents for the treatment of epilepsy in 2015 to include a focus on preclinical approaches to model pharmacoresistant seizures. This present report highlights the in vivo and in vitro findings associated with the initial pharmacological validation of this testing approach using a number of mechanistically diverse, commercially available antiseizure drugs, as well as several probe compounds that are of potential mechanistic interest to the clinical management of epilepsy.


Assuntos
Anticonvulsivantes/uso terapêutico , Avaliação Pré-Clínica de Medicamentos/normas , Epilepsia Resistente a Medicamentos/tratamento farmacológico , Animais , Avaliação Pré-Clínica de Medicamentos/métodos , Epilepsia Resistente a Medicamentos/induzido quimicamente , Epilepsia Resistente a Medicamentos/etiologia , Eletrochoque/efeitos adversos , Ácido Caínico/toxicidade , Excitação Neurológica/efeitos dos fármacos , Excitação Neurológica/fisiologia , Masculino , Camundongos , Técnicas de Cultura de Órgãos , Ratos , Ratos Sprague-Dawley
3.
Epilepsia ; 57(12): 1958-1967, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27739576

RESUMO

OBJECTIVE: Infection with Theiler's murine encephalomyelitis virus (TMEV) in C57Bl/6J mice induces acute seizures and development of spontaneous recurrent seizures and behavioral comorbidities weeks later. The present studies sought to determine whether acute therapeutic intervention with an anti-inflammatory-based approach could prevent or modify development of TMEV-induced long-term behavioral comorbidities. Valproic acid (VPA), in addition to its prototypical anticonvulsant properties, inhibits histone deacetylase (HDAC) activity, which may alter expression of the inflammasome. Minocycline (MIN) has previously demonstrated an antiseizure effect in the TMEV model via direct anti-inflammatory mechanisms, but the long-term effect of MIN treatment on the development of chronic behavioral comorbidities is unknown. METHODS: Mice infected with TMEV were acutely administered MIN (50 mg/kg, b.i.d. and q.d.) or VPA (100 mg/kg, q.d.) during the 7-day viral infection period. Animals were evaluated for acute seizure severity and subsequent development of chronic behavioral comorbidities and seizure threshold. RESULTS: Administration of VPA reduced the proportion of mice with seizures, delayed onset of symptomatic seizures, and reduced seizure burden during the acute infection. This was in contrast to the effects of administration of once-daily MIN, which did not affect the proportion of mice with seizures or delay onset of acute symptomatic seizures. However, VPA-treated mice were no different from vehicle (VEH)-treated mice in long-term behavioral outcomes, including open field activity and seizure threshold. Once-daily MIN treatment, despite no effect on the maximum observed Racine stage seizure severity, was associated with improved long-term behavioral outcomes and normalized seizure threshold. SIGNIFICANCE: Acute seizure control alone is insufficient to modify chronic disease comorbidities in the TMEV model. This work further supports the role of an inflammatory response in the development of chronic behavioral comorbidities and further highlights the utility of this platform for the development of mechanistically novel pharmacotherapies for epilepsy.


Assuntos
Anticonvulsivantes/uso terapêutico , Comportamento Animal/efeitos dos fármacos , Epilepsia do Lobo Temporal , Minociclina/uso terapêutico , Theilovirus/patogenicidade , Ácido Valproico/uso terapêutico , Animais , Transtornos de Ansiedade/tratamento farmacológico , Transtornos de Ansiedade/etiologia , Peso Corporal/efeitos dos fármacos , Distribuição de Qui-Quadrado , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Epilepsia do Lobo Temporal/tratamento farmacológico , Epilepsia do Lobo Temporal/etiologia , Epilepsia do Lobo Temporal/virologia , Comportamento Exploratório/efeitos dos fármacos , Camundongos , Atividade Motora/efeitos dos fármacos , Desempenho Psicomotor/efeitos dos fármacos , Teste de Desempenho do Rota-Rod
4.
Epilepsia ; 57(9): 1386-97, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27466022

RESUMO

OBJECTIVE: Some antiseizure drugs (ASDs) are associated with cognitive liability in patients with epilepsy, thus ASDs without this risk would be preferred. Little comparative pharmacology exists with ASDs in preclinical models of cognition. Few pharmacologic studies exist on the acute effects in rodents with chronic seizures. Predicting risk for cognitive impact with preclinical models may supply valuable ASD differentiation data. METHODS: ASDs (phenytoin [PHT]; carbamazepine [CBZ]; valproic acid [VPA]; lamotrigine [LTG]; phenobarbital [PB]; tiagabine [TGB]; retigabine [RTG]; topiramate [TPM]; and levetiracetam [LEV]) were administered equivalent to maximal electroshock median effective dose ([ED50]; mice, rats), or median dose necessary to elicit minimal motor impairment (median toxic dose [TD50]; rats). Cognition models with naive adult rodents were novel object/place recognition (NOPR) task with CF-1 mice, and Morris water maze (MWM) with Sprague-Dawley rats. Selected ASDs were also administered to rats prior to testing in an open field. The effect of chronic seizures and ASD administration on cognitive performance in NOPR was also determined with corneal-kindled mice. Mice that did not achieve kindling criterion (partially kindled) were included to examine the effect of electrical stimulation on cognitive performance. Sham-kindled and age-matched mice were also tested. RESULTS: No ASD (ED50) affected latency to locate the MWM platform; TD50 of PB, RTG, TPM, and VPA reduced this latency. In naive mice, CBZ and VPA (ED50) reduced time with the novel object. Of interest, no ASD (ED50) affected performance of fully kindled mice in NOPR, whereas CBZ and LEV improved cognitive performance of partially kindled mice. SIGNIFICANCE: Standardized approaches to the preclinical evaluation of an ASD's potential cognitive impact are needed to inform drug development. This study demonstrated acute, dose- and model-dependent effects of therapeutically relevant doses of ASDs on cognitive performance of naive mice and rats, and corneal-kindled mice. This study highlights the challenge of predicting clinical adverse effects with preclinical models.


Assuntos
Anticonvulsivantes/efeitos adversos , Transtornos Cognitivos/induzido quimicamente , Córnea/inervação , Excitação Neurológica , Convulsões/tratamento farmacológico , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Eletrochoque/efeitos adversos , Comportamento Exploratório , Masculino , Aprendizagem em Labirinto , Camundongos , Camundongos Endogâmicos C57BL , Antagonistas Muscarínicos , Ratos , Ratos Sprague-Dawley , Reconhecimento Psicológico , Escopolamina/toxicidade , Convulsões/etiologia , Natação
5.
J Neuropathol Exp Neurol ; 75(4): 366-78, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26945036

RESUMO

It is estimated that 30%-40% of epilepsy patients are refractory to therapy and animal models are useful for the identification of more efficacious therapeutic agents. Various well-characterized syndrome-specific models are needed to assess their relevance to human seizure disorders and their validity for testing potential therapies. The corneal kindled mouse model of temporal lobe epilepsy (TLE) allows for the rapid screening of investigational compounds, but there is a lack of information as to the specific inflammatory pathology in this model. Similarly, the Theiler murine encephalomyelitis virus (TMEV) model of TLE may prove to be useful for screening, but quantitative assessment of hippocampal pathology is also lacking. We used immunohistochemistry to characterize and quantitate acute neuronal injury and inflammatory features in dorsal CA1 and dentate gyrus regions and in the directly overlying posterior parietal cortex at 2 time points in each of these TLE models. Corneal kindled mice were observed to have astrogliosis, but not microgliosis or neuron cell death. In contrast, TMEV-injected mice had astrogliosis, microgliosis, neuron death, and astrocyte and microglial proliferation. Our results suggest that these 2 animal models might be appropriate for evaluation of distinct therapies for TLE.


Assuntos
Proliferação de Células/fisiologia , Modelos Animais de Doenças , Epilepsia do Lobo Temporal/complicações , Gliose/etiologia , Neuroglia/patologia , Neurônios/patologia , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Infecções por Cardiovirus/complicações , Epilepsia do Lobo Temporal/patologia , Epilepsia do Lobo Temporal/virologia , Fluoresceínas/metabolismo , Antígeno Ki-67/metabolismo , Excitação Neurológica/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/metabolismo , Microscopia Confocal , Proteínas do Tecido Nervoso/metabolismo , Theilovirus/patogenicidade
6.
Drugs ; 75(7): 749-67, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25925798

RESUMO

Several relevant animal models of epileptogenesis and biomarkers have emerged for evaluating the antiepileptogenic potential of an investigational drug. Although several promising candidate compounds and approaches have been identified in these preclinical models, no treatment has yet successfully navigated the path from preclinical efficacy to clinical validation. Until such an agent can move from preclinical proof of concept to clinical success, the need remains to continually develop and optimize preclinical models and clinical trial design in an effort to guide potential clinical investigations. This review describes several available models of disease modification and/or epileptogenesis, preclinical studies in these models and potential biomarkers useful for evaluating the efficacy of a potential therapeutic agent in the preclinical setting. The results that emerge from such efforts may then guide the clinical evaluation of a candidate compound. This review discusses some of the known limitations and hurdles to moving compounds found effective in these models to clinical practice, in the hope that knowledge of this information will facilitate the design and conduct of clinical studies and effectively facilitate the identification of a first-in-class disease-modifying or antiepileptogenic agent.


Assuntos
Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Epilepsia/tratamento farmacológico , Animais , Biomarcadores/metabolismo , Modelos Animais de Doenças , Descoberta de Drogas/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Drogas em Investigação/farmacologia , Drogas em Investigação/uso terapêutico , Epilepsia/metabolismo , Humanos
7.
J Pharmacol Exp Ther ; 353(2): 318-29, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25755209

RESUMO

Central nervous system infections can underlie the development of epilepsy, and Theiler's murine encephalomyelitis virus (TMEV) infection in C57BL/6J mice provides a novel model of infection-induced epilepsy. Approximately 50-65% of infected mice develop acute, handling-induced seizures during the infection. Brains display acute neuropathology, and a high number of mice develop spontaneous, recurrent seizures and behavioral comorbidities weeks later. This study characterized the utility of this model for drug testing by assessing whether antiseizure drug treatment during the acute infection period attenuates handling-induced seizures, and whether such treatment modifies associated comorbidities. Male C57BL/6J mice infected with TMEV received twice-daily valproic acid (VPA; 200 mg/kg), carbamazepine (CBZ; 20 mg/kg), or vehicle during the infection (days 0-7). Mice were assessed twice daily during the infection period for handling-induced seizures. Relative to vehicle-treated mice, more CBZ-treated mice presented with acute seizures; VPA conferred no change. In mice displaying seizures, VPA, but not CBZ, reduced seizure burden. Animals were then randomly assigned to acute and long-term follow-up. VPA was associated with significant elevations in acute (day 8) glial fibrillary acidic protein (astrocytes) immunoreactivity, but did not affect NeuN (neurons) immunoreactivity. Additionally, VPA-treated mice showed improved motor performance 15 days postinfection (DPI). At 36 DPI, CBZ-treated mice traveled significantly less distance through the center of an open field, indicative of anxiety-like behavior. CBZ-treated mice also presented with significant astrogliosis 36 DPI. Neither CBZ nor VPA prevented long-term reductions in NeuN immunoreactivity. The TMEV model thus provides an etiologically relevant platform to evaluate potential treatments for acute seizures and disease modification.


Assuntos
Anticonvulsivantes/farmacologia , Comportamento Animal/efeitos dos fármacos , Carbamazepina/farmacologia , Epilepsia do Lobo Temporal/tratamento farmacológico , Epilepsia do Lobo Temporal/etiologia , Theilovirus/fisiologia , Ácido Valproico/farmacologia , Animais , Anticonvulsivantes/efeitos adversos , Anticonvulsivantes/uso terapêutico , Ansiedade/induzido quimicamente , Carbamazepina/efeitos adversos , Carbamazepina/uso terapêutico , Infecções por Cardiovirus/complicações , Comorbidade , Proteínas de Ligação a DNA , Modelos Animais de Doenças , Epilepsia do Lobo Temporal/complicações , Epilepsia do Lobo Temporal/virologia , Proteína Glial Fibrilar Ácida , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Teste de Desempenho do Rota-Rod , Theilovirus/efeitos dos fármacos , Fatores de Tempo , Ácido Valproico/efeitos adversos , Ácido Valproico/uso terapêutico
8.
Neurochem Res ; 39(10): 1980-7, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24627365

RESUMO

It is clear that normal neuronal function relies on a tight balance between excitatory and inhibitory neurotransmission. Inhibitory signaling through the GABAergic system can be tightly regulated at the level of GABA uptake via GABA transporters (GAT). As such, selectively modulating the GABA uptake process through pharmacological agents has been an area of active investigation over several decades. These studies have demonstrated that inhibition of astroglial, but not neuronal, GATs may be preferred for anticonvulsant action. To date, four distinct GAT subtypes have been identified and efforts to selectively target these transporters have led to the proliferation of pharmacological agents aimed at augmenting extrasynaptic GABA levels. These pharmacological tools have provided novel and informative insight into the role of GABA and GABAergic signaling in the brain, but have also provided critical information concerning the regulation of CNS disorders associated with an imbalance in inhibitory tone, such as epilepsy. One such compound with notable inhibitory effects at GATs, tiagabine, has demonstrated clinical anticonvulsant efficacy, and is, to date, the only approved GAT inhibitor for clinical use. Thus, efforts to identify and develop GAT subtype-specific compounds continue to be an area of active investigation for the management of epilepsy and other CNS disorders. Herein, the historical efforts to elucidate the role of GABA in the synapse, as well as the role of GAT inhibitors as anticonvulsants, are described.


Assuntos
Anticonvulsivantes/farmacologia , Proteínas da Membrana Plasmática de Transporte de GABA/farmacologia , Ácido gama-Aminobutírico/efeitos dos fármacos , Animais , Humanos , Ácido gama-Aminobutírico/fisiologia
9.
J Neurochem ; 125(4): 555-65, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23480199

RESUMO

Methamphetamine-induced partial dopamine depletions are associated with impaired basal ganglia function, including decreased preprotachykinin mRNA expression and impaired transcriptional activation of activity-regulated, cytoskeleton-associated (Arc) gene in striatum. Recent work implicates deficits in phasic dopamine signaling as a potential mechanism linking methamphetamine-induced dopamine loss to impaired basal ganglia function. This study thus sought to establish a causal link between phasic dopamine transmission and altered basal ganglia function by determining whether the deficits in striatal neuron gene expression could be restored by increasing phasic dopamine release. Three weeks after pretreatment with saline or a neurotoxic regimen of methamphetamine, rats underwent phasic- or tonic-like stimulation of ascending dopamine neurons. Striatal gene expression was examined using in situ hybridization histochemistry. Phasic-like, but not tonic-like, stimulation induced immediate-early genes Arc and zif268 in both groups, despite the partial striatal dopamine denervation in methamphetamine-pretreated rats, with the Arc expression occurring in presumed striatonigral efferent neurons. Phasic-like stimulation also restored preprotachykinin mRNA expression. These results suggest that disruption of phasic dopamine signaling likely underlies methamphetamine-induced impairments in basal ganglia function, and that restoring phasic dopamine signaling may be a viable approach to manage long-term consequences of methamphetamine-induced dopamine loss on basal ganglia functions.


Assuntos
Corpo Estriado/fisiologia , Dopamina/fisiologia , Neurônios Dopaminérgicos/fisiologia , Feixe Prosencefálico Mediano/fisiologia , Metanfetamina/toxicidade , Síndromes Neurotóxicas/fisiopatologia , Transtornos Relacionados ao Uso de Anfetaminas/genética , Transtornos Relacionados ao Uso de Anfetaminas/fisiopatologia , Animais , Estimulantes do Sistema Nervoso Central/toxicidade , Corpo Estriado/efeitos dos fármacos , Proteínas do Citoesqueleto/genética , Denervação/métodos , Neurônios Dopaminérgicos/efeitos dos fármacos , Proteína 1 de Resposta de Crescimento Precoce/genética , Estimulação Elétrica/métodos , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/fisiologia , Genes Precoces/genética , Masculino , Feixe Prosencefálico Mediano/efeitos dos fármacos , Proteínas do Tecido Nervoso/genética , Síndromes Neurotóxicas/genética , Precursores de Proteínas/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Taquicininas/genética
10.
J Neurochem ; 123(5): 845-55, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22978492

RESUMO

The immediate-early gene Arc (activity-regulated cytoskeleton-associated protein) is provocative in the context of neuroplasticity because of its experience-dependent regulation and mRNA transport to and translation at activated synapses. Normal rats have more preproenkephalin-negative (ppe-neg; presumed striatonigral) neurons with cytoplasmic Arc mRNA than ppe-positive (ppe-pos; striatopallidal) neurons, despite equivalent numbers of these neurons showing novelty-induced transcriptional activation of Arc. Furthermore, rats with partial monoamine loss induced by methamphetamine (METH) show impaired Arc mRNA expression in both ppe-neg and ppe-pos neurons relative to normal animals following response-reversal learning. In this study, Arc expression induced by exposure to a novel environment was used to assess transcriptional activation and cytoplasmic localization of Arc mRNA in striatal efferent neuron subpopulations subsequent to METH-induced neurotoxicity. Partial monoamine depletion significantly altered Arc expression. Specifically, basal Arc expression was elevated, but novelty-induced transcriptional activation was abolished. Without novelty-induced Arc transcription, METH-pre-treated rats also had fewer neurons with cytoplasmic Arc mRNA expression, with the effect being greater for ppe-neg neurons. Thus, METH-induced neurotoxicity substantially alters striatal efferent neuron function at the level of Arc transcription, suggesting a long-term shift in basal ganglia neuroplasticity processes subsequent to METH-induced neurotoxicity. Such changes potentially underlie striatally based learning deficits associated with METH-induced neurotoxicity.


Assuntos
Estimulantes do Sistema Nervoso Central/toxicidade , Proteínas do Citoesqueleto/biossíntese , Dopamina/metabolismo , Metanfetamina/toxicidade , Proteínas do Tecido Nervoso/biossíntese , Neurônios Eferentes/metabolismo , Animais , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Regulação da Expressão Gênica , Hibridização in Situ Fluorescente , Masculino , Neurônios Eferentes/efeitos dos fármacos , Síndromes Neurotóxicas/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Transcrição Gênica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA