Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biotechnol Appl Biochem ; 69(3): 920-929, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33830536

RESUMO

Ex vivo interaction of NaYF4 :Yb,Er nanophosphors with isolated mitochondria has been investigated. The nanophosphors were synthesized using the hydrothermal method. The synthesized NaYF4 :Yb,Er nanophosphors were characterized for physicochemical properties. The NaYF4 :Yb,Er nanophosphors showed successful upconversion with excitation wavelength lying in the near-infrared region. The effect of synthesized NaYF4 :Yb,Er nanophosphors on mitochondria isolated from the chicken heart tissue was examined through ROS generation capacity, membrane fluidity, and complex II activity. The exposer of NaYF4 :Yb,Er nanophosphors to isolated mitochondria inhibits ROS generation activity as compared to control. The mitochondria membrane fluidity of the lipid bilayer and complex-II activity of mitochondria was observed to be unaltered after the interaction with NaYF4 :Yb,Er nanoparticles. The results confirm that synthesized NaYF4 :Yb,Er nanoparticles can be used as a safe contrast agent.


Assuntos
Érbio , Itérbio , Érbio/química , Fluoretos/química , Fluoretos/farmacologia , Mitocôndrias , Espécies Reativas de Oxigênio , Itérbio/química , Ítrio/química
2.
J Membr Biol ; 254(2): 217-237, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33786641

RESUMO

The paper assessed the toxic effect of titanium dioxide (TiO2) nanoparticles (NPs) on isolated mitochondria and its dysfunction prevention after Iron (Fe) incorporation. TiO2 and Fe content TiO2 NPs were synthesized and characterized using XPS, PL spectroscopy, and TEM. The nanostructure interaction with isolated mitochondria was investigated using circular dichroism (CD) confocal microscopy, flow cytometry, atomic force microscopy (AFM), surface-enhanced Raman spectroscopy (SERS), and FT-IR spectroscopy via nonspecific pathway. Fe content TiO2 NPs helps to control the dissolution rate of parent nanomaterial of TiO2 on the mitochondrial membrane. Confocal micrographs and flow cytometry results confirmed that Rhodamine 123 dye intensity get increased after interaction with Fe content TiO2 NPs which states the integrity of the mitochondrial membrane. AFM results revealed that TiO2 induces the swelling of mitochondrial tubules and also impaired the mitochondrial structure, whereas Fe content TiO2 NPs interaction prevents the impairment of mitochondrial tubules. The denaturation of a membrane protein by TiO2 interactions was observed through CD Spectroscopy. Further, nano-bio-interface study was performed using SERS, through shifting and extinct of peaks affiliated to membrane proteins and lipids. However, Fe content TiO2-treated samples showed a significant increase in the membrane potential of mitochondria via flow cytometry results.


Assuntos
Ferro , Potencial da Membrana Mitocondrial , Mitocôndrias/efeitos dos fármacos , Nanopartículas , Titânio , Ferro/química , Nanopartículas/toxicidade , Espectroscopia de Infravermelho com Transformada de Fourier , Titânio/toxicidade
3.
Toxicol Res (Camb) ; 8(5): 711-722, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31588348

RESUMO

The potential impact of TiO2 and Fe incorporated TiO2 nanoparticles at the organelle level has been reported. The toxicity of the samples on mitochondria isolated from chicken liver tissue has been examined through mitochondrial swelling, membrane fluidity, ROS generation capacity, and activity of complex II. The toxic effect of TiO2 was prevented by incorporating Fe into the TiO2 matrix at different concentrations. The activity of the succinate dehydrogenase enzyme complex was affected and permeabilization of the mitochondrial inner membrane to H+ and K+ and its alteration in membrane fluidity at 100 µg mL-1 of nano-TiO2 dosage were investigated, which showed significant changes in the anisotropy of DPH-labeled mitochondria. Fe incorporation into the TiO2 matrix makes it more biocompatible by changing its structure and morphology.

4.
Biointerphases ; 14(4): 041003, 2019 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-31390867

RESUMO

Titanium dioxide (TiO2) nanoparticles (NPs) have made unbelievable progress in the field of nanotechnology and biomedical research. The proper toxicological assessment of TiO2 NPs and the reduction of its cytotoxicity need to be addressed. Fe doping in TiO2 has been investigated to reduce the toxic effects of TiO2 NPs. Fe doped TiO2 powder samples were synthesized by sol-gel methods. The prepared samples were characterized by x-ray diffractometer (XRD), transmission electron microscope (TEM), and Raman spectroscopy to study their structure, morphology, and molecular conformation. XRD results revealed the coexistence of anatase (A) and rutile (R) phases of TiO2. The A-R transformation was observed with an increase in Fe doping along with the formation of α-Fe2O3 phase. TEM showed changes in morphology from spherical nanoparticles to elongated rod-shaped nanostructures with increasing Fe content. Shape variation of TiO2 nanoparticles after incorporation of Fe is a key reason behind the toxicity reduction. The authors observed that the toxicity of TiO2 nanoparticles was rescued upon Fe incorporation. The effect of NPs on the mitochondrial membrane potential (MMP) was assessed using flow cytometry. The MMP (%) decreased in TiO2 treated cells and increased by 1% Fe doped TiO2 NPs treated cells. Confocal imaging revealed the presence of functional mitochondria upon the exposure of Fe doped TiO2 NPs. The goal of the present study was to decrease the toxic effects induced by TiO2 NPs on mitochondrial potential and its prevention by Fe doping.


Assuntos
Ligas/toxicidade , Células Epiteliais/efeitos dos fármacos , Compostos de Ferro/toxicidade , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Titânio/toxicidade , Linhagem Celular , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA