Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(26): eadg3444, 2023 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-37390207

RESUMO

Spondweni virus (SPONV) is the closest known relative of Zika virus (ZIKV). SPONV pathogenesis resembles that of ZIKV in pregnant mice, and both viruses are transmitted by Aedes aegypti mosquitoes. We aimed to develop a translational model to further understand SPONV transmission and pathogenesis. We found that cynomolgus macaques (Macaca fascicularis) inoculated with ZIKV or SPONV were susceptible to ZIKV but resistant to SPONV infection. In contrast, rhesus macaques (Macaca mulatta) supported productive infection with both ZIKV and SPONV and developed robust neutralizing antibody responses. Crossover serial challenge in rhesus macaques revealed that SPONV immunity did not protect against ZIKV infection, whereas ZIKV immunity was fully protective against SPONV infection. These findings establish a viable model for future investigation into SPONV pathogenesis and suggest that the risk of SPONV emergence is low in areas with high ZIKV seroprevalence due to one-way cross-protection between ZIKV and SPONV.


Assuntos
Aedes , Infecção por Zika virus , Zika virus , Feminino , Gravidez , Animais , Camundongos , Macaca mulatta , Infecção por Zika virus/prevenção & controle , Estudos Soroepidemiológicos , Macaca fascicularis
2.
PLoS One ; 18(3): e0282151, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36888581

RESUMO

BACKGROUND: SARS-CoV-2-mediated COVID-19 may cause sudden cardiac death (SCD). Factors contributing to this increased risk of potentially fatal arrhythmias include thrombosis, exaggerated immune response, and treatment with QT-prolonging drugs. However, the intrinsic arrhythmic potential of direct SARS-CoV-2 infection of the heart remains unknown. OBJECTIVE: To assess the cellular and electrophysiological effects of direct SARS-CoV-2 infection of the heart using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). METHODS: hiPSC-CMs were transfected with recombinant SARS-CoV-2 spike protein (CoV-2 S) or CoV-2 S fused to a modified Emerald fluorescence protein (CoV-2 S-mEm). Cell morphology was visualized using immunofluorescence microscopy. Action potential duration (APD) and cellular arrhythmias were measured by whole cell patch-clamp. Calcium handling was assessed using the Fluo-4 Ca2+ indicator. RESULTS: Transfection of hiPSC-CMs with CoV-2 S-mEm produced multinucleated giant cells (syncytia) displaying increased cellular capacitance (75±7 pF, n = 10 vs. 26±3 pF, n = 10; P<0.0001) consistent with increased cell size. The APD90 was prolonged significantly from 419±26 ms (n = 10) in untransfected hiPSC-CMs to 590±67 ms (n = 10; P<0.05) in CoV-2 S-mEm-transfected hiPSC-CMs. CoV-2 S-induced syncytia displayed delayed afterdepolarizations, erratic beating frequency, and calcium handling abnormalities including calcium sparks, large "tsunami"-like waves, and increased calcium transient amplitude. After furin protease inhibitor treatment or mutating the CoV-2 S furin cleavage site, cell-cell fusion was no longer evident and Ca2+ handling returned to normal. CONCLUSION: The SARS-CoV-2 spike protein can directly perturb both the cardiomyocyte's repolarization reserve and intracellular calcium handling that may confer the intrinsic, mechanistic substrate for the increased risk of SCD observed during this COVID-19 pandemic.


Assuntos
COVID-19 , Células-Tronco Pluripotentes Induzidas , Síndrome do QT Longo , Humanos , Miócitos Cardíacos/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Cálcio/metabolismo , Furina/metabolismo , Síndrome do QT Longo/metabolismo , Pandemias , COVID-19/metabolismo , SARS-CoV-2/metabolismo , Arritmias Cardíacas/metabolismo , Potenciais de Ação/fisiologia
3.
J Virol ; 95(24): e0136821, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34613786

RESUMO

Severe cardiovascular complications can occur in coronavirus disease of 2019 (COVID-19) patients. Cardiac damage is attributed mostly to the aberrant host response to acute respiratory infection. However, direct infection of cardiac tissue by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) also occurs. We examined here the cardiac tropism of SARS-CoV-2 in spontaneously beating human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). These cardiomyocytes express the angiotensin-converting enzyme 2 (ACE2) receptor but not the transmembrane protease serine 2 (TMPRSS2) that mediates spike protein cleavage in the lungs. Nevertheless, SARS-CoV-2 infection of hiPSC-CMs was prolific; viral transcripts accounted for about 88% of total mRNA. In the cytoplasm of infected hiPSC-CMs, smooth-walled exocytic vesicles contained numerous 65- to 90-nm particles with canonical ribonucleocapsid structures, and virus-like particles with knob-like spikes covered the cell surface. To better understand how SARS-CoV-2 spreads in hiPSC-CMs, we engineered an expression vector coding for the spike protein with a monomeric emerald-green fluorescent protein fused to its cytoplasmic tail (S-mEm). Proteolytic processing of S-mEm and the parental spike were equivalent. Live cell imaging tracked spread of S-mEm cell-to-cell and documented formation of syncytia. A cell-permeable, peptide-based molecule that blocks the catalytic site of furin and furin-like proteases abolished cell fusion. A spike mutant with the single amino acid change R682S that disrupts the multibasic furin cleavage motif was fusion inactive. Thus, SARS-CoV-2 replicates efficiently in hiPSC-CMs and furin, and/or furin-like-protease activation of its spike protein is required for fusion-based cytopathology. This hiPSC-CM platform enables target-based drug discovery in cardiac COVID-19. IMPORTANCE Cardiac complications frequently observed in COVID-19 patients are tentatively attributed to systemic inflammation and thrombosis, but viral replication has occasionally been confirmed in cardiac tissue autopsy materials. We developed an in vitro model of SARS-CoV-2 spread in myocardium using induced pluripotent stem cell-derived cardiomyocytes. In these highly differentiated cells, viral transcription levels exceeded those previously documented in permissive transformed cell lines. To better understand the mechanisms of SARS-CoV-2 spread, we expressed a fluorescent version of its spike protein that allowed us to characterize a fusion-based cytopathic effect. A mutant of the spike protein with a single amino acid mutation in the furin/furin-like protease cleavage site lost cytopathic function. Of note, the fusion activities of the spike protein of other coronaviruses correlated with the level of cardiovascular complications observed in infections with the respective viruses. These data indicate that SARS-CoV-2 may cause cardiac damage by fusing cardiomyocytes.


Assuntos
COVID-19/virologia , Miócitos Cardíacos/virologia , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/metabolismo , Animais , Catepsina B/metabolismo , Fusão Celular , Chlorocebus aethiops , Células-Tronco Embrionárias/metabolismo , Exocitose , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Microscopia Confocal , Serina Endopeptidases/metabolismo , Células Vero , Proteínas Virais/metabolismo , Internalização do Vírus , Replicação Viral
4.
J Fish Biol ; 95(1): 287-292, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30387143

RESUMO

Chemical cues released as a by-product of predation mediate antipredator behaviour, but little is known about the physiological responses to olfactory detection of predation risk. In this study, zebrafish Danio rerio were exposed to either chemical alarm cues from conspecifics, or water (control). Compared with water controls, D. rerio exposed to alarm cues responded behaviourally with antipredator behaviours such as erratic dashing and an increase in time spent near the bottom of the test aquarium. Danio rerio were sacrificed 5 min after exposure to test cues (alarm cues or water). Enzyme-linked immunosorbent assay (ELISA) revealed whole-body levels of cortisol that were significantly higher for fish exposed to alarm cues (mean ± SE, 11.9 ± 3.4 ng g-1 ) than control fish (1.5 ± 0.7 ng g-1 ). These data provide a benchmark for future studies of the proximate mechanisms of olfactorily mediated antipredator responses, modelling effects on aquatic life in a changing climate and, as a model organism, Danio rerio can further our understanding of anxiety in humans.


Assuntos
Comunicação Animal , Hidrocortisona/metabolismo , Olfato/fisiologia , Peixe-Zebra/fisiologia , Animais , Sinais (Psicologia) , Comportamento Predatório , Estimulação Química , Água , Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA