Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 18(5): 4346-55, 2010 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-20389446

RESUMO

We present first damage threshold investigations on EUV mirrors and substrate materials using a table-top laser produced plasma source. A Schwarzschild objective with Mo/Si multilayer coatings for the wavelength of 13.5 nm was adapted to the source, generating an EUV spot of 5 microm diameter with a maximum energy density of approximately 6.6 J/cm(2). Single-pulse damage tests were performed on grazing incidence gold mirrors, Mo/Si multilayer mirrors and mirror substrates, respectively. For gold mirrors, a film thickness dependent damage threshold is observed, which can be partially explained by a thermal interaction process. For Mo/Si multilayer mirrors two damage regimes (spot-like, crater) were identified. Fused silica exhibits very smooth ablation craters, indicating a direct photon-induced bond breaking process. Silicon shows the highest damage threshold of all investigated substrate and coating materials. The damage experiments on substrates (fused silica, silicon, CaF(2)) were compared to excimer laser ablation studies at 157 nm.

2.
Rev Sci Instrum ; 80(9): 093102, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19791927

RESUMO

We report on the fabrication of aluminum gallium nitride (AlGaN) Schottky-photodiode-based detectors. AlGaN layers were grown using metal-organic chemical vapor deposition (MOCVD) on Si(111) wafers. The diodes were characterized at a wavelength of 13.5 nm using a table-top extreme-ultraviolet (EUV) radiation source, consisting of a laser-produced xenon plasma and a Schwarzschild objective. The responsivity of the diodes was tested between EUV energies ranging from 320 nJ down to several picojoules. For low fluences, a linear responsivity of 7.14 mAs/J could be determined. Saturation starts at approximately 1 nJ, merging into a linear response of 0.113 mAs/J, which could be attributed to the photoeffect on the Au electrodes on top of the diode. Furthermore, degradation tests were performed up to an absolute dose of 3.3x10(19) photons/cm(2). AlGaN photodiodes were compared to commercially available silicon-based photodetectors. For AlGaN diodes, responsivity does not change even for the highest EUV dose, whereas the response of the Si diode decreases linearly to approximately 93% after 2x10(19) photons/cm(2).

3.
Rev Sci Instrum ; 78(10): 103509, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17979421

RESUMO

We present a laser driven soft x-ray source based on a novel solid argon filament. The continuously flowing micron-sized filament (diameter approximately 56 microm, flow speed approximately 5 mms) was used as a laser target in order to generate a plasma source of high brightness in the "water window" (2.2-4.4 nm) spectral range. The emission properties of the source were characterized in detail with respect to crucial parameters such as positional and energy stability using an extreme ultraviolet (XUV) sensitive pinhole camera and an XUV spectrometer. The results are compared with an argon plasma based on a gas puff target operated under the same experimental conditions showing an increase of the brilliance by a factor of 84. By changing the capillary geometry from a constant diameter to a convergent shape the flow speed of the filament was significantly increased up to 250 mms, facilitating the operation at higher repetition rates.


Assuntos
Argônio/química , Eletrodos , Calefação/instrumentação , Lasers , Espectrofotometria Ultravioleta/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Calefação/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Espectrofotometria Ultravioleta/métodos , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA