Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Science ; 382(6666): 81-87, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37797004

RESUMO

For almost a century, magnetic oscillations have been a powerful "quantum ruler" for measuring Fermi surface topology. In this study, we used Landau-level spectroscopy to unravel the energy-resolved valley-contrasting orbital magnetism and large orbital magnetic susceptibility that contribute to the energies of Landau levels of twisted double-bilayer graphene. These orbital magnetism effects led to substantial deviations from the standard Onsager relation, which manifested as a breakdown in scaling of Landau-level orbits. These substantial magnetic responses emerged from the nontrivial quantum geometry of the electronic structure and the large length scale of the moiré lattice potential. Going beyond traditional measurements, Landau-level spectroscopy performed with a scanning tunneling microscope offers a complete quantum ruler that resolves the full energy dependence of orbital magnetic properties in moiré quantum matter.

2.
Nano Lett ; 16(1): 227-31, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26636471

RESUMO

Using transport measurements, we investigate multicomponent quantum Hall (QH) ferromagnetism in dual-gated rhombohedral trilayer graphene (r-TLG) in which the real spin, orbital pseudospin, and layer pseudospins of the lowest Landau level form spontaneous ordering. We observe intermediate QH plateaus, indicating a complete lifting of the degeneracy of the zeroth Landau level (LL) in the hole-doped regime. In charge neutral r-TLG, the orbital degeneracy is broken first, and the layer degeneracy is broken last and only in the presence of an interlayer potential U⊥. In the phase space of U⊥ and filling factor ν, we observe an intriguing "hexagon" pattern, which is accounted for by a model based on crossings between symmetry-broken LLs.

4.
Nat Commun ; 5: 5656, 2014 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-25502210

RESUMO

Many physical phenomena can be understood by single-particle physics; that is, treating particles as non-interacting entities. When this fails, many-body interactions lead to spontaneous symmetry breaking and phenomena such as fundamental particles' mass generation, superconductivity and magnetism. Competition between single-particle and many-body physics leads to rich phase diagrams. Here we show that rhombohedral-stacked trilayer graphene offers an exciting platform for studying such interplay, in which we observe a giant intrinsic gap ~42 meV that can be partially suppressed by an interlayer potential, a parallel magnetic field or a critical temperature ~36 K. Among the proposed correlated phases with spatial uniformity, our results are most consistent with a layer antiferromagnetic state with broken time reversal symmetry. These results reflect the interplay between externally induced and spontaneous symmetry breaking whose relative strengths are tunable by external fields, and provide insight into other low-dimensional systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA