Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Artif Intell Med ; 150: 102821, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38553161

RESUMO

In the field of medical diagnosis and patient monitoring, effective pattern recognition in neurological time-series data is essential. Traditional methods predominantly based on statistical or probabilistic learning and inference often struggle with multivariate, multi-source, state-varying, and noisy data while also posing privacy risks due to excessive information collection and modeling. Furthermore, these methods often overlook critical statistical information, such as the distribution of data points and inherent uncertainties. To address these challenges, we introduce an information theory-based pipeline that leverages specialized features to identify patterns in neurological time-series data while minimizing privacy risks. We incorporate various entropy methods based on the characteristics of different scenarios and entropy. For stochastic state transition applications, we incorporate Shannon's entropy, entropy rates, entropy production, and the von Neumann entropy of Markov chains. When state modeling is impractical, we select and employ approximate entropy, increment entropy, dispersion entropy, phase entropy, and slope entropy. The pipeline's effectiveness and scalability are demonstrated through pattern analysis in a dementia care dataset and also an epileptic and a myocardial infarction dataset. The results indicate that our information theory-based pipeline can achieve average performance improvements across various models on the recall rate, F1 score, and accuracy by up to 13.08 percentage points, while enhancing inference efficiency by reducing the number of model parameters by an average of 3.10 times. Thus, our approach opens a promising avenue for improved, efficient, and critical statistical information-considered pattern recognition in medical time-series data.


Assuntos
Entropia , Humanos , Cadeias de Markov , Fatores de Tempo
2.
NPJ Digit Med ; 7(1): 11, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38218738

RESUMO

Urinary Tract Infections (UTIs) are one of the most prevalent bacterial infections in older adults and a significant contributor to unplanned hospital admissions in People Living with Dementia (PLWD), with early detection being crucial due to the predicament of reporting symptoms and limited help-seeking behaviour. The most common diagnostic tool is urine sample analysis, which can be time-consuming and is only employed where UTI clinical suspicion exists. In this method development and proof-of-concept study, participants living with dementia were monitored via low-cost devices in the home that passively measure activity, sleep, and nocturnal physiology. Using 27828 person-days of remote monitoring data (from 117 participants), we engineered features representing symptoms used for diagnosing a UTI. We then evaluate explainable machine learning techniques in passively calculating UTI risk and perform stratification on scores to support clinical translation and allow control over the balance between alert rate and sensitivity and specificity. The proposed UTI algorithm achieves a sensitivity of 65.3% (95% Confidence Interval (CI) = 64.3-66.2) and specificity of 70.9% (68.6-73.1) when predicting UTIs on unseen participants and after risk stratification, a sensitivity of 74.7% (67.9-81.5) and specificity of 87.9% (85.0-90.9). In addition, feature importance methods reveal that the largest contributions to the predictions were bathroom visit statistics, night-time respiratory rate, and the number of previous UTI events, aligning with the literature. Our machine learning method alerts clinicians of UTI risk in subjects, enabling earlier detection and enhanced screening when considering treatment.

3.
Sci Data ; 10(1): 606, 2023 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-37689815

RESUMO

Dementia is a progressive condition that affects cognitive and functional abilities. There is a need for reliable and continuous health monitoring of People Living with Dementia (PLWD) to improve their quality of life and support their independent living. Healthcare services often focus on addressing and treating already established health conditions that affect PLWD. Managing these conditions continuously can inform better decision-making earlier for higher-quality care management for PLWD. The Technology Integrated Health Management (TIHM) project developed a new digital platform to routinely collect longitudinal, observational, and measurement data, within the home and apply machine learning and analytical models for the detection and prediction of adverse health events affecting the well-being of PLWD. This work describes the TIHM dataset collected during the second phase (i.e., feasibility study) of the TIHM project. The data was collected from homes of 56 PLWD and associated with events and clinical observations (daily activity, physiological monitoring, and labels for health-related conditions). The study recorded an average of 50 days of data per participant, totalling 2803 days.


Assuntos
Demência , Qualidade de Vida , Humanos , Atividades Cotidianas , Atenção à Saúde , Instalações de Saúde
4.
Ann Clin Transl Neurol ; 10(9): 1688-1694, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37537851

RESUMO

Internet of things (IOT) based in-home monitoring systems can passively collect high temporal resolution data in the community, offering valuable insight into the impact of health conditions on patients' day-to-day lives. We used this technology to monitor activity and sleep patterns in older adults recently discharged after traumatic brain injury (TBI). The demographics of TBI are changing, and it is now a leading cause of hospitalisation in older adults. However, research in this population is minimal. We present three cases, showcasing the potential of in-home monitoring systems in understanding and managing early recovery in older adults following TBI.


Assuntos
Lesões Encefálicas Traumáticas , Humanos , Idoso , Hospitalização , Monitorização Fisiológica , Alta do Paciente
5.
BMJ Open ; 13(5): e068756, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217265

RESUMO

INTRODUCTION: The prevalence of traumatic brain injury (TBI) among older adults is increasing exponentially. The sequelae can be severe in older adults and interact with age-related conditions such as multimorbidity. Despite this, TBI research in older adults is sparse. Minder, an in-home monitoring system developed by the UK Dementia Research Institute Centre for Care Research and Technology, uses infrared sensors and a bed mat to passively collect sleep and activity data. Similar systems have been used to monitor the health of older adults living with dementia. We will assess the feasibility of using this system to study changes in the health status of older adults in the early period post-TBI. METHODS AND ANALYSIS: The study will recruit 15 inpatients (>60 years) with a moderate-severe TBI, who will have their daily activity and sleep patterns monitored using passive and wearable sensors over 6 months. Participants will report on their health during weekly calls, which will be used to validate sensor data. Physical, functional and cognitive assessments will be conducted across the duration of the study. Activity levels and sleep patterns derived from sensor data will be calculated and visualised using activity maps. Within-participant analysis will be performed to determine if participants are deviating from their own routines. We will apply machine learning approaches to activity and sleep data to assess whether the changes in these data can predict clinical events. Qualitative analysis of interviews conducted with participants, carers and clinical staff will assess acceptability and utility of the system. ETHICS AND DISSEMINATION: Ethical approval for this study has been granted by the London-Camberwell St Giles Research Ethics Committee (REC) (REC number: 17/LO/2066). Results will be submitted for publication in peer-reviewed journals, presented at conferences and inform the design of a larger trial assessing recovery after TBI.


Assuntos
Lesões Encefálicas Traumáticas , Demência , Humanos , Idoso , Estudos de Viabilidade , Multimorbidade , Cuidadores
6.
Semin Oncol Nurs ; 39(3): 151433, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37137770

RESUMO

OBJECTIVES: To navigate the field of digital cancer care and define and discuss key aspects and applications of big data analytics, artificial intelligence (AI), and data-driven interventions. DATA SOURCES: Peer-reviewed scientific publications and expert opinion. CONCLUSION: The digital transformation of cancer care, enabled by big data analytics, AI, and data-driven interventions, presents a significant opportunity to revolutionize the field. An increased understanding of the lifecycle and ethics of data-driven interventions will enhance development of innovative and applicable products to advance digital cancer care services. IMPLICATIONS FOR NURSING PRACTICE: As digital technologies become integrated into cancer care, nurse practitioners and scientists will be required to increase their knowledge and skills to effectively use these tools to the patient's benefit. An enhanced understanding of the core concepts of AI and big data, confident use of digital health platforms, and ability to interpret the outputs of data-driven interventions are key competencies. Nurses in oncology will play a crucial role in patient education around big data and AI, with a focus on addressing any arising questions, concerns, or misconceptions to foster trust in these technologies. Successful integration of data-driven innovations into oncology nursing practice will empower practitioners to deliver more personalized, effective, and evidence-based care.


Assuntos
Inteligência Artificial , Neoplasias , Humanos , Big Data , Oncologia , Tecnologia Digital , Neoplasias/terapia
7.
JMIR Aging ; 6: e43777, 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36892931

RESUMO

BACKGROUND: Internet of Things (IoT) technology enables physiological measurements to be recorded at home from people living with dementia and monitored remotely. However, measurements from people with dementia in this context have not been previously studied. We report on the distribution of physiological measurements from 82 people with dementia over approximately 2 years. OBJECTIVE: Our objective was to characterize the physiology of people with dementia when measured in the context of their own homes. We also wanted to explore the possible use of an alerts-based system for detecting health deterioration and discuss the potential applications and limitations of this kind of system. METHODS: We performed a longitudinal community-based cohort study of people with dementia using "Minder," our IoT remote monitoring platform. All people with dementia received a blood pressure machine for systolic and diastolic blood pressure, a pulse oximeter measuring oxygen saturation and heart rate, body weight scales, and a thermometer, and were asked to use each device once a day at any time. Timings, distributions, and abnormalities in measurements were examined, including the rate of significant abnormalities ("alerts") defined by various standardized criteria. We used our own study criteria for alerts and compared them with the National Early Warning Score 2 criteria. RESULTS: A total of 82 people with dementia, with a mean age of 80.4 (SD 7.8) years, recorded 147,203 measurements over 958,000 participant-hours. The median percentage of days when any participant took any measurements (ie, any device) was 56.2% (IQR 33.2%-83.7%, range 2.3%-100%). Reassuringly, engagement of people with dementia with the system did not wane with time, reflected in there being no change in the weekly number of measurements with respect to time (1-sample t-test on slopes of linear fit, P=.45). A total of 45% of people with dementia met criteria for hypertension. People with dementia with α-synuclein-related dementia had lower systolic blood pressure; 30% had clinically significant weight loss. Depending on the criteria used, 3.03%-9.46% of measurements generated alerts, at 0.066-0.233 per day per person with dementia. We also report 4 case studies, highlighting the potential benefits and challenges of remote physiological monitoring in people with dementia. These include case studies of people with dementia developing acute infections and one of a person with dementia developing symptomatic bradycardia while taking donepezil. CONCLUSIONS: We present findings from a study of the physiology of people with dementia recorded remotely on a large scale. People with dementia and their carers showed acceptable compliance throughout, supporting the feasibility of the system. Our findings inform the development of technologies, care pathways, and policies for IoT-based remote monitoring. We show how IoT-based monitoring could improve the management of acute and chronic comorbidities in this clinically vulnerable group. Future randomized trials are required to establish if a system like this has measurable long-term benefits on health and quality of life outcomes.

8.
NPJ Digit Med ; 5(1): 154, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36253530

RESUMO

The COVID-19 pandemic has dramatically altered the behaviour of most of the world's population, particularly affecting the elderly, including people living with dementia (PLwD). Here we use remote home monitoring technology deployed into 31 homes of PLwD living in the UK to investigate the effects of COVID-19 on behaviour within the home, including social isolation. The home activity was monitored continuously using unobtrusive sensors for 498 days from 1 December 2019 to 12 April 2021. This period included six distinct pandemic phases with differing public health measures, including three periods of home 'lockdown'. Linear mixed-effects modelling is used to examine changes in the home activity of PLwD who lived alone or with others. An algorithm is developed to quantify time spent outside the home. Increased home activity is observed from very early in the pandemic, with a significant decrease in the time spent outside produced by the first lockdown. The study demonstrates the effects of COVID-19 lockdown on home behaviours in PLwD and shows how unobtrusive home monitoring can be used to track behaviours relevant to social isolation.

9.
Sci Rep ; 12(1): 17052, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36224203

RESUMO

Oncology patients experience numerous co-occurring symptoms during their treatment. The identification of sentinel/core symptoms is a vital prerequisite for therapeutic interventions. In this study, using Network Analysis, we investigated the inter-relationships among 38 common symptoms over time (i.e., a total of six time points over two cycles of chemotherapy) in 987 oncology patients with four different types of cancer (i.e., breast, gastrointestinal, gynaecological, and lung). In addition, we evaluated the associations between and among symptoms and symptoms clusters and examined the strength of these interactions over time. Eight unique symptom clusters were identified within the networks. Findings from this research suggest that changes occur in the relationships and interconnections between and among co-occurring symptoms and symptoms clusters that depend on the time point in the chemotherapy cycle and the type of cancer. The evaluation of the centrality measures provides new insights into the relative importance of individual symptoms within various networks that can be considered as potential targets for symptom management interventions.


Assuntos
Neoplasias , Humanos , Estudos Longitudinais , Neoplasias/tratamento farmacológico , Cuidados Paliativos , Síndrome
10.
Nurs Ethics ; 29(4): 1035-1046, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35105196

RESUMO

It has now become a realistic prospect for smart care to be provided at home for those living with long-term conditions such as dementia. In the contemporary smart care scenario, homes are fitted with an array of sensors for remote monitoring providing data that feed into intelligent systems developed to highlight concerning patterns of behaviour or physiological measurements and to alert healthcare professionals to the need for action. This paper explores some ethical issues that may arise within such smart care systems, focusing on the extent to which ethical issues can be addressed at the system design stage. Artificial intelligence has been widely portrayed as an ethically risky technology, posing challenges for privacy and human autonomy and with the potential to introduce and exacerbate bias and inequality. While broad principles for ethical artificial intelligence have become established, the mechanisms for governing ethical artificial intelligence are still evolving. In healthcare settings the implementation of smart technologies falls within the existing frameworks for ethical review and governance. Feeding into this ethical review there are many practical steps that designers can take to build ethical considerations into the technology. After exploring the pre-emptive steps that can be taken in design and governance to provide for an ethical smart care system, the paper reviews the potential for further ethical challenges to arise within the everyday implementation of smart care systems in the context of dementia, despite the best efforts of all concerned to pre-empt them. The paper concludes with an exploration of the dilemmas that may thus face healthcare professionals involved in implementing this kind of smart care and with a call for further research to explore ethical dimensions of smart care both in terms of general principles and lived experience.


Assuntos
Demência , Serviços de Assistência Domiciliar , Inteligência Artificial , Demência/terapia , Humanos , Privacidade , Tecnologia
11.
Alzheimers Dement ; 17 Suppl 12: e058614, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34971120

RESUMO

BACKGROUND: People living with dementia (PLWD) have an increased susceptibility to developing adverse physical and psychological events. Internet of Things (IoT) technologies provides new ways to remotely monitor patients within the comfort of their homes, particularly important for the timely delivery of appropriate healthcare. Presented here is data collated as part of the on-going UK Dementia Research Institute's Care Research and Technology Centre cohort and Technology Integrated Health Management (TIHM) study. There are two main aims to this work: first, to investigate the effect of the COVID-19 quarantine on the performance of daily living activities of PLWD, on which there is currently little research; and second, to create a simple classification model capable of effectively predicting agitation risk in PLWD, allowing for the generation of alerts with actionable information by which to prevent such outcomes. METHOD: A within-subject, date-matched study was conducted on daily living activity data using the first COVID-19 quarantine as a natural experiment. Supervised machine learning approaches were then applied to combined physiological and environmental data to create two simple classification models: a single marker model trained using ambient temperature as a feature, and a multi-marker model using ambient temperature, body temperature, movement, and entropy as features. RESULT: There are 102 PLWD total included in the dataset, with all patients having an established diagnosis of dementia, but with ranging types and severity. The COVID-19 study was carried out on a sub-group of 21 patient households. In 2020, PLWD had a significant increase in daily household activity (p = 1.40e-08), one-way repeated measures ANOVA). Moreover, there was a significant interaction between the pandemic quarantine and patient gender on night-time bed-occupancy duration (p = 3.00e-02, two-way mixed-effect ANOVA). On evaluating the models using 10-fold cross validation, both the single and multi-marker model were shown to balance precision and recall well, having F1-scores of 0.80 and 0.66, respectively. CONCLUSION: Remote monitoring technologies provide a continuous and reliable way of monitoring patient day-to-day wellbeing. The application of statistical analyses and machine learning algorithms to combined physiological and environmental data has huge potential to positively impact the delivery of healthcare for PLWD.

12.
Sensors (Basel) ; 21(24)2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34960500

RESUMO

We introduce a set of input models for fusing information from ensembles of wearable sensors supporting human performance and telemedicine. Veracity is demonstrated in action classification related to sport, specifically strikes in boxing and taekwondo. Four input models, formulated to be compatible with a broad range of classifiers, are introduced and two diverse classifiers, dynamic time warping (DTW) and convolutional neural networks (CNNs) are implemented in conjunction with the input models. Seven classification models fusing information at the input-level, output-level, and a combination of both are formulated. Action classification for 18 boxing punches and 24 taekwondo kicks demonstrate our fusion classifiers outperform the best DTW and CNN uni-axial classifiers. Furthermore, although DTW is ostensibly an ideal choice for human movements experiencing non-linear variations, our results demonstrate deep learning fusion classifiers outperform DTW. This is a novel finding given that CNNs are normally designed for multi-dimensional data and do not specifically compensate for non-linear variations within signal classes. The generalized formulation enables subject-specific movement classification in a feature-blind fashion with trivial computational expense for trained CNNs. A commercial boxing system, 'Corner', has been produced for real-world mass-market use based on this investigation providing a basis for future telemedicine translation.


Assuntos
Movimento , Redes Neurais de Computação , Humanos
13.
IEEE Internet Things J ; 8(16): 12826-12846, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35782886

RESUMO

As COVID-19 hounds the world, the common cause of finding a swift solution to manage the pandemic has brought together researchers, institutions, governments, and society at large. The Internet of Things (IoT), artificial intelligence (AI)-including machine learning (ML) and Big Data analytics-as well as Robotics and Blockchain, are the four decisive areas of technological innovation that have been ingenuity harnessed to fight this pandemic and future ones. While these highly interrelated smart and connected health technologies cannot resolve the pandemic overnight and may not be the only answer to the crisis, they can provide greater insight into the disease and support frontline efforts to prevent and control the pandemic. This article provides a blend of discussions on the contribution of these digital technologies, propose several complementary and multidisciplinary techniques to combat COVID-19, offer opportunities for more holistic studies, and accelerate knowledge acquisition and scientific discoveries in pandemic research. First, four areas, where IoT can contribute are discussed, namely: 1) tracking and tracing; 2) remote patient monitoring (RPM) by wearable IoT (WIoT); 3) personal digital twins (PDTs); and 4) real-life use case: ICT/IoT solution in South Korea. Second, the role and novel applications of AI are explained, namely: 1) diagnosis and prognosis; 2) risk prediction; 3) vaccine and drug development; 4) research data set; 5) early warnings and alerts; 6) social control and fake news detection; and 7) communication and chatbot. Third, the main uses of robotics and drone technology are analyzed, including: 1) crowd surveillance; 2) public announcements; 3) screening and diagnosis; and 4) essential supply delivery. Finally, we discuss how distributed ledger technologies (DLTs), of which blockchain is a common example, can be combined with other technologies for tackling COVID-19.

14.
IEEE Trans Neural Netw Learn Syst ; 32(9): 4243-4252, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-32866104

RESUMO

Continual learning models allow them to learn and adapt to new changes and tasks over time. However, in continual and sequential learning scenarios, in which the models are trained using different data with various distributions, neural networks (NNs) tend to forget the previously learned knowledge. This phenomenon is often referred to as catastrophic forgetting. The catastrophic forgetting is an inevitable problem in continual learning models for dynamic environments. To address this issue, we propose a method, called continual Bayesian learning networks (CBLNs), which enables the networks to allocate additional resources to adapt to new tasks without forgetting the previously learned tasks. Using a Bayesian NN, CBLN maintains a mixture of Gaussian posterior distributions that are associated with different tasks. The proposed method tries to optimize the number of resources that are needed to learn each task and avoids an exponential increase in the number of resources that are involved in learning multiple tasks. The proposed method does not need to access the past training data and can choose suitable weights to classify the data points during the test time automatically based on an uncertainty criterion. We have evaluated the method on the MNIST and UCR time-series data sets. The evaluation results show that the method can address the catastrophic forgetting problem at a promising rate compared to the state-of-the-art models.

15.
Sci Rep ; 9(1): 2258, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30783135

RESUMO

Oncology patients undergoing cancer treatment experience an average of fifteen unrelieved symptoms that are highly variable in both their severity and distress. Recent advances in Network Analysis (NA) provide a novel approach to gain insights into the complex nature of co-occurring symptoms and symptom clusters and identify core symptoms. We present findings from the first study that used NA to examine the relationships among 38 common symptoms in a large sample of oncology patients undergoing chemotherapy. Using two different models of Pairwise Markov Random Fields (PMRF), we examined the nature and structure of interactions for three different dimensions of patients' symptom experience (i.e., occurrence, severity, distress). Findings from this study provide the first direct evidence that the connections between and among symptoms differ depending on the symptom dimension used to create the network. Based on an evaluation of the centrality indices, nausea appears to be a structurally important node in all three networks. Our findings can be used to guide the development of symptom management interventions based on the identification of core symptoms and symptom clusters within a network.


Assuntos
Modelos Biológicos , Neoplasias , Qualidade de Vida , Idoso , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Síndrome
16.
PLoS One ; 14(1): e0209909, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30645599

RESUMO

Dementia is a neurological and cognitive condition that affects millions of people around the world. At any given time in the United Kingdom, 1 in 4 hospital beds are occupied by a person with dementia, while about 22% of these hospital admissions are due to preventable causes. In this paper we discuss using Internet of Things (IoT) technologies and in-home sensory devices in combination with machine learning techniques to monitor health and well-being of people with dementia. This will allow us to provide more effective and preventative care and reduce preventable hospital admissions. One of the unique aspects of this work is combining environmental data with physiological data collected via low cost in-home sensory devices to extract actionable information regarding the health and well-being of people with dementia in their own home environment. We have worked with clinicians to design our machine learning algorithms where we focused on developing solutions for real-world settings. In our solutions, we avoid generating too many alerts/alarms to prevent increasing the monitoring and support workload. We have designed an algorithm to detect Urinary Tract Infections (UTI) which is one of the top five reasons of hospital admissions for people with dementia (around 9% of hospital admissions for people with dementia in the UK). To develop the UTI detection algorithm, we have used a Non-negative Matrix Factorisation (NMF) technique to extract latent factors from raw observation and use them for clustering and identifying the possible UTI cases. In addition, we have designed an algorithm for detecting changes in activity patterns to identify early symptoms of cognitive decline or health decline in order to provide personalised and preventative care services. For this purpose, we have used an Isolation Forest (iForest) technique to create a holistic view of the daily activity patterns. This paper describes the algorithms and discusses the evaluation of the work using a large set of real-world data collected from a trial with people with dementia and their caregivers.


Assuntos
Atividades Cotidianas , Demência/fisiopatologia , Aprendizado de Máquina , Infecções Urinárias/diagnóstico , Idoso , Demência/terapia , Feminino , Hospitalização , Humanos , Masculino , Pessoa de Meia-Idade , Reino Unido , Infecções Urinárias/fisiopatologia , Infecções Urinárias/terapia
17.
Br J Community Nurs ; 23(10): 502-508, 2018 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-30290728

RESUMO

Pioneering advances have been made in Internet of Things technologies (IoT) in healthcare. This article describes the development and testing of a bespoke IoT system for dementia care. Technology integrated health management (TIHM) for dementia is part of the NHS England National Test Bed Programme and has involved trailing the deployment of network enabled devices combined with artificial intelligence to improve outcomes for people with dementia and their carers. TIHM uses machine learning and complex algorithms to detect and predict early signs of ill health. The premise is if changes in a person's health or routine can be identified early on, support can be targeted at the point of need to prevent the development of more serious complications.


Assuntos
Atenção à Saúde/métodos , Demência/enfermagem , Internet , Telemedicina/métodos , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Cuidadores , Procedimentos Clínicos , Feminino , Humanos , Aprendizado de Máquina , Masculino , Medicina Estatal , Reino Unido , Dispositivos Eletrônicos Vestíveis
18.
PLoS One ; 13(5): e0195605, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29723236

RESUMO

The number of people diagnosed with dementia is expected to rise in the coming years. Given that there is currently no definite cure for dementia and the cost of care for this condition soars dramatically, slowing the decline and maintaining independent living are important goals for supporting people with dementia. This paper discusses a study that is called Technology Integrated Health Management (TIHM). TIHM is a technology assisted monitoring system that uses Internet of Things (IoT) enabled solutions for continuous monitoring of people with dementia in their own homes. We have developed machine learning algorithms to analyse the correlation between environmental data collected by IoT technologies in TIHM in order to monitor and facilitate the physical well-being of people with dementia. The algorithms are developed with different temporal granularity to process the data for long-term and short-term analysis. We extract higher-level activity patterns which are then used to detect any change in patients' routines. We have also developed a hierarchical information fusion approach for detecting agitation, irritability and aggression. We have conducted evaluations using sensory data collected from homes of people with dementia. The proposed techniques are able to recognise agitation and unusual patterns with an accuracy of up to 80%.


Assuntos
Atividades Cotidianas , Demência/fisiopatologia , Habitação , Aprendizado de Máquina , Monitorização Fisiológica/instrumentação , Entropia , Humanos , Cadeias de Markov
19.
J Pain Symptom Manage ; 55(2): 318-333.e4, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28859882

RESUMO

CONTEXT: Risk profiling of oncology patients based on their symptom experience assists clinicians to provide more personalized symptom management interventions. Recent findings suggest that oncology patients with distinct symptom profiles can be identified using a variety of analytic methods. OBJECTIVES: The objective of this study was to evaluate the concordance between the number and types of subgroups of patients with distinct symptom profiles using latent class analysis and K-modes analysis. METHODS: Using data on the occurrence of 25 symptoms from the Memorial Symptom Assessment Scale, that 1329 patients completed prior to their next dose of chemotherapy (CTX), Cohen's kappa coefficient was used to evaluate for concordance between the two analytic methods. For both latent class analysis and K-modes, differences among the subgroups in demographic, clinical, and symptom characteristics, as well as quality of life outcomes were determined using parametric and nonparametric statistics. RESULTS: Using both analytic methods, four subgroups of patients with distinct symptom profiles were identified (i.e., all low, moderate physical and lower psychological, moderate physical and higher Psychological, and all high). The percent agreement between the two methods was 75.32%, which suggests a moderate level of agreement. In both analyses, patients in the all high group were significantly younger and had a higher comorbidity profile, worse Memorial Symptom Assessment Scale subscale scores, and poorer QOL outcomes. CONCLUSION: Both analytic methods can be used to identify subgroups of oncology patients with distinct symptom profiles. Additional research is needed to determine which analytic methods and which dimension of the symptom experience provide the most sensitive and specific risk profiles.


Assuntos
Diagnóstico por Computador/métodos , Neoplasias/diagnóstico , Fatores Etários , Antineoplásicos/uso terapêutico , Comorbidade , Feminino , Humanos , Análise de Classes Latentes , Estudos Longitudinais , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade , Neoplasias/classificação , Neoplasias/epidemiologia , Neoplasias/psicologia , Qualidade de Vida , Medição de Risco/métodos
20.
PLoS One ; 13(12): e0208808, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30596658

RESUMO

Effective symptom management is a critical component of cancer treatment. Computational tools that predict the course and severity of these symptoms have the potential to assist oncology clinicians to personalize the patient's treatment regimen more efficiently and provide more aggressive and timely interventions. Three common and inter-related symptoms in cancer patients are depression, anxiety, and sleep disturbance. In this paper, we elaborate on the efficiency of Support Vector Regression (SVR) and Non-linear Canonical Correlation Analysis by Neural Networks (n-CCA) to predict the severity of the aforementioned symptoms between two different time points during a cycle of chemotherapy (CTX). Our results demonstrate that these two methods produced equivalent results for all three symptoms. These types of predictive models can be used to identify high risk patients, educate patients about their symptom experience, and improve the timing of pre-emptive and personalized symptom management interventions.


Assuntos
Ansiedade/psicologia , Depressão/psicologia , Modelos Psicológicos , Neoplasias/psicologia , Redes Neurais de Computação , Máquina de Vetores de Suporte , Feminino , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA