Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Mater Chem B ; 11(32): 7663-7674, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37458393

RESUMO

Every year, there are approximately 500 000 peripheral nerve injury (PNI) procedures due to trauma in the US alone. Autologous and acellular nerve grafts are among current clinical repair options; however, they are limited largely by the high costs associated with donor nerve tissue harvesting and implant processing, respectively. Therefore, there is a clinical need for an off-the-shelf nerve graft that can recapitulate the native microenvironment of the nerve. In our previous work, we created a hydrogel scaffold that incorporates mechanical and biological cues that mimic the peripheral nerve microenvironment using chemically modified hyaluronic acid (HA). However, with our previous work, the degradation profile and cell adhesivity was not ideal for tissue regeneration, in particular, peripheral nerve regeneration. To improve our previous hydrogel, HA was conjugated with fibrinogen using Michael-addition to assist in cell adhesion and hydrogel degradability. The addition of the fibrinogen linker was found to contribute to faster scaffold degradation via active enzymatic breakdown, compared to HA alone. Additionally, cell count and metabolic activity was significantly higher on HA conjugated fibrinogen compared previous hydrogel formulations. This manuscript discusses the various techniques deployed to characterize our new modified HA fibrinogen chemistry physically, mechanically, and biologically. This work addresses the aforementioned concerns by incorporating controllable degradability and increased cell adhesivity while maintaining incorporation of hyaluronic acid, paving the pathway for use in a variety of applications as a multi-purpose tissue engineering platform.


Assuntos
Engenharia Tecidual , Engenharia Tecidual/métodos , Hidrogéis/química , Ácido Hialurônico/química , Fibrinogênio/química , Animais , Ratos , Linhagem Celular
2.
J Am Chem Soc ; 143(10): 4005-4016, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33673734

RESUMO

Melanin is a ubiquitous natural pigment found in a diverse array of organisms. Allomelanin is a class of nitrogen-free melanin often found in fungi. Herein, we find artificial allomelanin analogues exhibit high intrinsic microporosity and describe an approach for further increasing and tuning that porosity. Notably, the synthetic method involves an oxidative polymerization of 1,8-DHN in water, negating the need for multiple complex templating steps and avoiding expensive or complex chemical precursors. The well-defined morphologies of these nanomaterials were elucidated by a combination of electron microscopy and scattering methods, yielding to high-resolution 3D reconstruction based on small-angle X-ray scattering (SAXS) results. Synthetic allomelanin nanoparticles exhibit high BET areas, up to 860 m2/g, and are capable of ammonia capture up to 17.0 mmol/g at 1 bar. In addition, these nanomaterials can adsorb nerve agent simulants in solution and as a coating on fabrics with high breathability where they prevent breakthrough. We also confirmed that naturally derived fungal melanin can adsorb nerve gas simulants in solution efficiently despite lower porosity than synthetic analogues. Our approach inspires further analysis of yet to be discovered biological materials of this class where melanins with intrinsic microporosity may be linked to evolutionary advantages in relevant organisms and may in turn inspire the design of new high surface area materials.


Assuntos
Biopolímeros/química , Melaninas/química , Adsorção , Biopolímeros/metabolismo , Fungos/metabolismo , Melaninas/metabolismo , Nanopartículas/química , Naftóis/química , Naftóis/metabolismo , Paraoxon/química , Paraoxon/metabolismo , Porosidade , Espalhamento a Baixo Ângulo , Difração de Raios X
3.
Biomacromolecules ; 21(12): 5077-5085, 2020 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-33169973

RESUMO

We present a modular platform from which biohybrid protein-polymer nanostructures can be generated in a straightforward and facile manner. Specifically, an aqueous polymerization-induced self-assembly (PISA) AB block copolymerization system was derived from a mutant superfolder green fluorescent protein (sfGFP) as the solvophilic, stabilizing A block. By genetically encoding sfGFP with an isobutyryl bromide functionality, we grafted a quintessential atom-transfer radical polymerization initiation site with hydroxypropyl methacrylate (HPMA) to form the solvophobic B block. Monitoring nanostructure formation using dynamic light scattering, gel permeation chromatography, and transmission electron microscopy revealed uniform micellar morphologies. The radii of the micelles increased with increasing HPMA block length, resulting in nanoparticle sizes ranging from 15 to 48 nm. Solvophilic stabilization afforded by the encoded sfGFP makes this an ideal PISA initiator, and we posit this platform has potential for generating complex biohybrid nanostructures for other protein-polymer systems.


Assuntos
Código Genético , Nanoestruturas , Polímeros , Micelas , Polimerização
4.
Biomacromolecules ; 21(6): 2463-2472, 2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32378896

RESUMO

The self-assembly behavior of an ABC triblock copolypeptide consisting of poly(ethylene oxide-b-(leucine-s-valine)-b-lysine) (PEO-PLV-PK) was examined via dynamic light scattering in dilute aqueous solution. Leucine is a hydrophobic, α-helix forming polypeptide that exhibits a "zipper effect" in coiled-coil dimers. We hypothesize that the specific interaction afforded by the leucine zipper dominates the thermodynamics of self-assembly through the side-by-side ordering of α-helices, which drives vesicle formation in a polymer with only 6 wt % hydrophobic content. Additionally, a multitude of assembly sizes and morphologies were attainable from a single polymer, depending on the solution processing method. Thermodynamic effects of the leucine zipper can be interpreted, in part, from solubility parameters determined from molecular modeling. The combination of synthesis, solvent processing, and computational studies helps to elucidate the thermodynamic effects of this unique assembly motif on classical self-assembly processes.


Assuntos
Zíper de Leucina , Peptídeos , Sequência de Aminoácidos , Leucina , Modelos Moleculares
5.
Biomacromolecules ; 20(7): 2557-2566, 2019 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-31244016

RESUMO

Poly(ethylene oxide43- b-lysine62- b-leucine72) (wherein subscripts denote the degree of polymerization) was synthesized via ring-opening polymerization of N-carboxyanhydrides using an amine-terminated poly(ethylene oxide) macroinitiator, with polypeptide blocks produced by sequential monomer addition. Infrared and circular dichroism spectroscopy indicated that the peptide blocks in this polymer formed α-helices in the solid and solution states, respectively. In the aqueous solution, this polymer self-assembled into spherical micelles with a hydrodynamic radius of approximately 90 nm at concentrations between 0.05 and 0.20% w/w and pH values between 2 and 6.5. Upon preparation of transmission electron microscopy (TEM) grids, the micelles at pH 2 underwent hierarchical assembly to produce fractal assemblies, whereas small clusters were observed for micellar solutions at pH 6.5. Cryogenic-TEM of solutions showed spherical micelles, and dynamic light scattering showed no large (∼1 µm) aggregates in the solution, which suggests that fractal formation was a result of the drying process, and that fractals were not present in the solution. This system provides a facile route to nanostructured surfaces, which can be used for applications such as modulating cell adhesion or promoting the growth of neurons.


Assuntos
Micelas , Nanoestruturas/química , Peptídeos/química , Polietilenoglicóis/química , Polilisina/química , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Transmissão , Nanoestruturas/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA