Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 43(1): 113656, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38194346

RESUMO

Cancer cells maintain telomeres by upregulating telomerase or alternative lengthening of telomeres (ALT) via homology-directed repair at telomeric DNA breaks. 8-Oxoguanine (8oxoG) is a highly prevalent endogenous DNA lesion in telomeric sequences, altering telomere structure and telomerase activity, but its impact on ALT is unclear. Here, we demonstrate that targeted 8oxoG formation at telomeres stimulates ALT activity and homologous recombination specifically in ALT cancer cells. Mechanistically, an acute 8oxoG induction increases replication stress, as evidenced by increased telomere fragility and ATR kinase activation at ALT telomeres. Furthermore, ALT cells are more sensitive to chronic telomeric 8oxoG damage than telomerase-positive cancer cells, consistent with increased 8oxoG-induced replication stress. However, telomeric 8oxoG production in G2 phase, when ALT telomere elongation occurs, impairs telomeric DNA synthesis. Our study demonstrates that a common oxidative base lesion has a dual role in regulating ALT depending on when the damage arises in the cell cycle.


Assuntos
Telomerase , Telomerase/metabolismo , Homeostase do Telômero , Telômero/metabolismo , Estresse Oxidativo , Guanina
2.
bioRxiv ; 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37090589

RESUMO

Telomeres are prone to formation of the common oxidative lesion 8-oxoguanine (8oxoG), and the acute production of 8oxoG damage at telomeres is sufficient to drive rapid cellular senescence. OGG1 and MUTYH glycosylases initiate base excision repair (BER) at 8oxoG sites to remove the lesion or prevent mutation. Here, we show OGG1 loss or inhibition, or MUTYH loss, partially rescues telomeric 8oxoG-induced senescence, and loss of both glycosylases results in a near complete rescue. Loss of these glycosylases also suppresses 8oxoG-induced telomere fragility and dysfunction, indicating that single-stranded break (SSB) intermediates arising downstream of glycosylase activity impair telomere replication. The failure to initiate BER in glycosylase-deficient cells suppresses PARylation at SSB intermediates and confers resistance to the synergistic effects of PARP inhibitors on damage-induced senescence. Our studies reveal that inefficient completion of 8oxoG BER at telomeres triggers cellular senescence via SSB intermediates which impair telomere replication and stability.

3.
Genes (Basel) ; 14(2)2023 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-36833275

RESUMO

Telomeres present inherent difficulties to the DNA replication machinery due to their repetitive sequence content, formation of non-B DNA secondary structures, and the presence of the nucleo-protein t-loop. Especially in cancer cells, telomeres are hot spots for replication stress, which can result in a visible phenotype in metaphase cells termed "telomere fragility". A mechanism cells employ to mitigate replication stress, including at telomeres, is DNA synthesis in mitosis (MiDAS). While these phenomena are both observed in mitotic cells, the relationship between them is poorly understood; however, a common link is DNA replication stress. In this review, we will summarize what is known to regulate telomere fragility and telomere MiDAS, paying special attention to the proteins which play a role in these telomere phenotypes.


Assuntos
Replicação do DNA , DNA , DNA/metabolismo , Mitose , Fenótipo , Telômero/metabolismo
4.
Nat Struct Mol Biol ; 29(7): 639-652, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35773409

RESUMO

Oxidative stress is a primary cause of cellular senescence and contributes to the etiology of numerous human diseases. Oxidative damage to telomeric DNA has been proposed to cause premature senescence by accelerating telomere shortening. Here, we tested this model directly using a precision chemoptogenetic tool to produce the common lesion 8-oxo-guanine (8oxoG) exclusively at telomeres in human fibroblasts and epithelial cells. A single induction of telomeric 8oxoG is sufficient to trigger multiple hallmarks of p53-dependent senescence. Telomeric 8oxoG activates ATM and ATR signaling, and enriches for markers of telomere dysfunction in replicating, but not quiescent cells. Acute 8oxoG production fails to shorten telomeres, but rather generates fragile sites and mitotic DNA synthesis at telomeres, indicative of impaired replication. Based on our results, we propose that oxidative stress promotes rapid senescence by producing oxidative base lesions that drive replication-dependent telomere fragility and dysfunction in the absence of shortening and shelterin loss.


Assuntos
Guanina , Encurtamento do Telômero , Senescência Celular/genética , DNA/metabolismo , Dano ao DNA , Humanos , Estresse Oxidativo , Telômero/metabolismo
5.
Methods Mol Biol ; 2444: 141-159, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35290636

RESUMO

Mammalian telomeres are guanine-rich sequences which cap the ends of linear chromosomes. While recognized as sites sensitive to oxidative stress, studies on the consequences of oxidative damage to telomeres have been primarily limited to experimental conditions which cause oxidative damage throughout the whole genome and cell. We developed a chemoptogenetic tool (FAP-mCER-TRF1) to specifically induce singlet oxygen at telomeres, resulting in the formation of the common oxidative lesion 8-oxo-guanine. Here, we describe this tool and detail how to generate cell lines which express FAP-mCER-TRF1 at telomeres and verify the formation of 8-oxo-guanine.


Assuntos
Dano ao DNA , Telômero , Animais , Guanina/análogos & derivados , Guanina/metabolismo , Mamíferos/genética , Estresse Oxidativo/genética , Telômero/genética , Telômero/metabolismo
6.
Nat Commun ; 13(1): 974, 2022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-35190564

RESUMO

UV-DDB, consisting of subunits DDB1 and DDB2, recognizes UV-induced photoproducts during global genome nucleotide excision repair (GG-NER). We recently demonstrated a noncanonical role of UV-DDB in stimulating base excision repair (BER) which raised several questions about the timing of UV-DDB arrival at 8-oxoguanine (8-oxoG), and the dependency of UV-DDB on the recruitment of downstream BER and NER proteins. Using two different approaches to introduce 8-oxoG in cells, we show that DDB2 is recruited to 8-oxoG immediately after damage and colocalizes with 8-oxoG glycosylase (OGG1) at sites of repair. 8-oxoG removal and OGG1 recruitment is significantly reduced in the absence of DDB2. NER proteins, XPA and XPC, also accumulate at 8-oxoG. While XPC recruitment is dependent on DDB2, XPA recruitment is DDB2-independent and transcription-coupled. Finally, DDB2 accumulation at 8-oxoG induces local chromatin unfolding. We propose that DDB2-mediated chromatin decompaction facilitates the recruitment of downstream BER proteins to 8-oxoG lesions.


Assuntos
Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Guanina/análogos & derivados , Linhagem Celular Tumoral , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Dano ao DNA/efeitos da radiação , DNA Glicosilases/metabolismo , Proteínas de Ligação a DNA/genética , Técnicas de Silenciamento de Genes , Técnicas de Inativação de Genes , Guanina/metabolismo , Guanina/efeitos da radiação , Células HEK293 , Humanos , Raios Ultravioleta/efeitos adversos , Proteína de Xeroderma Pigmentoso Grupo A/genética , Proteína de Xeroderma Pigmentoso Grupo A/metabolismo
7.
Mol Cell ; 75(1): 117-130.e6, 2019 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-31101499

RESUMO

Telomeres are essential for genome stability. Oxidative stress caused by excess reactive oxygen species (ROS) accelerates telomere shortening. Although telomeres are hypersensitive to ROS-mediated 8-oxoguanine (8-oxoG) formation, the biological effect of this common lesion at telomeres is poorly understood because ROS have pleiotropic effects. Here we developed a chemoptogenetic tool that selectively produces 8-oxoG only at telomeres. Acute telomeric 8-oxoG formation increased telomere fragility in cells lacking OGG1, the enzyme that removes 8-oxoG, but did not compromise cell survival. However, chronic telomeric 8-oxoG induction over time shortens telomeres and impairs cell growth. Accumulation of telomeric 8-oxoG in chronically exposed OGG1-deficient cells triggers replication stress, as evidenced by mitotic DNA synthesis at telomeres, and significantly increases telomere losses. These losses generate chromosome fusions, leading to chromatin bridges and micronucleus formation upon cell division. By confining base damage to the telomeres, we show that telomeric 8-oxoG accumulation directly drives telomere crisis.


Assuntos
Aberrações Cromossômicas/efeitos da radiação , DNA Glicosilases/genética , Reparo do DNA/efeitos da radiação , Instabilidade Genômica/efeitos da radiação , Guanina/análogos & derivados , Telômero/efeitos da radiação , Divisão Celular/efeitos da radiação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos da radiação , Dano ao DNA , DNA Glicosilases/deficiência , Replicação do DNA/efeitos da radiação , Expressão Gênica , Guanina/agonistas , Guanina/biossíntese , Células HeLa , Humanos , Luz/efeitos adversos , Micronúcleos com Defeito Cromossômico/efeitos da radiação , Optogenética , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteoblastos/efeitos da radiação , Estresse Oxidativo/efeitos da radiação , Oxigênio Singlete/agonistas , Oxigênio Singlete/metabolismo , Telômero/metabolismo , Homeostase do Telômero/efeitos da radiação
8.
Methods Mol Biol ; 1999: 295-306, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31127586

RESUMO

Telomere repeats at chromosomal ends are essential for genome stability and sustained cellular proliferation but are susceptible to DNA damage. Repair of damage at telomeres is influenced by numerous factors including telomeric binding proteins, sequence and structure. Ultraviolet (UV) light irradiation induces DNA photoproducts at telomeres that can interfere with telomere maintenance. Here we describe a highly sensitive method for quantifying the formation and removal of UV photoproducts in telomeres isolated from UV irradiated cultured human cells. Damage is detected by immunospot blotting of telomeres with highly specific antibodies against UV photoproducts. This method is adaptable for measuring other types of DNA damage at telomeres as well.


Assuntos
Genômica/métodos , Immunoblotting/métodos , Dímeros de Pirimidina/análise , Telômero/efeitos da radiação , Raios Ultravioleta/efeitos adversos , Anticorpos/imunologia , Linhagem Celular , DNA/análise , DNA/genética , DNA/efeitos da radiação , Dano ao DNA/efeitos da radiação , Reparo do DNA , Instabilidade Genômica , Humanos , Dímeros de Pirimidina/genética , Dímeros de Pirimidina/efeitos da radiação , Telômero/genética , Telômero/imunologia , Proteínas de Ligação a Telômeros/imunologia
9.
Cell Rep ; 27(4): 1151-1164.e5, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-31018130

RESUMO

Common fragile sites (CFSs) are genomic regions that display gaps and breaks in human metaphase chromosomes under replication stress and are often deleted in cancer cells. We studied an ∼300-bp subregion (Flex1) of human CFS FRA16D in yeast and found that it recapitulates characteristics of CFS fragility in human cells. Flex1 fragility is dependent on the ability of a variable-length AT repeat to form a cruciform structure that stalls replication. Fragility at Flex1 is initiated by structure-specific endonuclease Mus81-Mms4 acting together with the Slx1-4/Rad1-10 complex, whereas Yen1 protects Flex1 against breakage. Sae2 is required for healing of Flex1 after breakage. Our study shows that breakage within a CFS can be initiated by nuclease cleavage at forks stalled at DNA structures. Furthermore, our results suggest that CFSs are not just prone to breakage but also are impaired in their ability to heal, and this deleterious combination accounts for their fragility.


Assuntos
Quebra Cromossômica , Sítios Frágeis do Cromossomo/genética , Cromossomos Humanos Par 16/genética , Replicação do DNA , Endonucleases/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , DNA Polimerase III/genética , DNA Polimerase III/metabolismo , Humanos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sequências de Repetição em Tandem
10.
Oncotarget ; 10(6): 620-621, 2019 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-30774755
11.
Mech Ageing Dev ; 177: 37-45, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29604323

RESUMO

Telomeres are dynamic nucleoprotein-DNA structures that cap and protect linear chromosome ends. Because telomeres shorten progressively with each replication, they impose a functional limit on the number of times a cell can divide. Critically short telomeres trigger cellular senescence in normal cells, or genomic instability in pre-malignant cells, which contribute to numerous degenerative and aging-related diseases including cancer. Therefore, a detailed understanding of the mechanisms of telomere loss and preservation is important for human health. Numerous studies have shown that oxidative stress is associated with accelerated telomere shortening and dysfunction. Oxidative stress caused by inflammation, intrinsic cell factors or environmental exposures, contributes to the pathogenesis of many degenerative diseases and cancer. Here we review the studies demonstrating associations between oxidative stress and accelerated telomere attrition in human tissue, mice and cell culture, and discuss possible mechanisms and cellular pathways that protect telomeres from oxidative damage.


Assuntos
Envelhecimento/metabolismo , Dano ao DNA , Exposição Ambiental/efeitos adversos , Estresse Oxidativo , Envelhecimento/patologia , Animais , Humanos , Camundongos , Oxirredução
12.
Cancer Res ; 78(23): 6549-6560, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30297532

RESUMO

: Neoplastic transformation and genome instability are enhanced by replication stress, conditions that slow or stall DNA replication forks. Consequently, cancer cells require multiple enzymes and checkpoint signaling pathways to mitigate replication stress for their viability and proliferation. Targeting proteins that enhance cancer cell survival during replication stress is a recent approach in clinical strategies, especially when targets produce synthetic lethality. DNA polymerase eta (Pol η) has many key functions in genome stability, particularly for translesion synthesis. Here we demonstrate that endogenous Pol η displays significant protein induction and forms intense foci throughout the nucleus in response to replication stress induced by drugs that do not directly form DNA adducts. During replication stress, Pol η-deficient cells displayed hyperactivation of the ATR replication checkpoint and arrested late in the cell cycle. During recovery from replication stress, Pol η-deficient cells continue to display aberrant phenotypes, including delayed cell-cycle progression, apoptosis, and cell survival. Depletion or inhibition of ATR was synthetically lethal with Pol η deficiency, particularly when tumor cells were treated with replication stress-inducing drugs. Together our data expand knowledge of the cellular environments that increase endogenous Pol η expression beyond DNA damaging agents and demonstrate that Pol η regulation is central to the replication stress response. Because Pol η is aberrantly expressed in several tumor types, our results are critical for developing more effective chemotherapy approaches and identify coinhibition of Pol η and ATR as a potential therapeutic strategy. SIGNIFICANCE: This study demonstrates that replication stress upregulates Pol η (POLH) in tumor cells and reveals a role for Pol η in tumor cell recovery following replication stress.


Assuntos
Pontos de Checagem do Ciclo Celular , Replicação do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Estresse Fisiológico , Linhagem Celular Tumoral , Sobrevivência Celular , DNA Polimerase Dirigida por DNA/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias/patologia , Mutações Sintéticas Letais
13.
DNA Repair (Amst) ; 57: 1-11, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28605669

RESUMO

Common fragile sites (CFSs) are inherently unstable genomic loci that are recurrently altered in human tumor cells. Despite their instability, CFS are ubiquitous throughout the human genome and associated with large tumor suppressor genes or oncogenes. CFSs are enriched with repetitive DNA sequences, one feature postulated to explain why these loci are inherently difficult to replicate, and sensitive to replication stress. We have shown that specialized DNA polymerases (Pols) η and κ replicate CFS-derived sequences more efficiently than the replicative Pol δ. However, we lacked an understanding of how these enzymes cooperate to ensure efficient CFS replication. Here, we designed a model of lagging strand replication with RFC loaded PCNA that allows for maximal activity of the four-subunit human Pol δ holoenzyme, Pol η, and Pol κ in polymerase mixing assays. We discovered that Pol η and κ are both able to exchange with Pol δ stalled at repetitive CFS sequences, enhancing Normalized Replication Efficiency. We used this model to test the impact of PCNA mono-ubiquitination on polymerase exchange, and found no change in polymerase cooperativity in CFS replication compared with unmodified PCNA. Finally, we modeled replication stress in vitro using aphidicolin and found that Pol δ holoenzyme synthesis was significantly inhibited in a dose-dependent manner, preventing any replication past the CFS. Importantly, Pol η and κ were still proficient in rescuing this stalled Pol δ synthesis, which may explain, in part, the CFS instability phenotype of aphidicolin-treated Pol η and Pol κ-deficient cells. In total, our data support a model wherein Pol δ stalling at CFSs allows for free exchange with a specialized polymerase that is not driven by PCNA.


Assuntos
Replicação do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Repetições de Microssatélites , Antígeno Nuclear de Célula em Proliferação/metabolismo , Sítios Frágeis do Cromossomo , DNA/metabolismo , DNA Polimerase III/metabolismo , Instabilidade Genômica , Humanos , Proteína de Replicação C/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitinação
14.
J Magn Reson ; 261: 199-204, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26507308

RESUMO

The necessary resonator employed in pulse electron paramagnetic resonance (EPR) rings after the excitation pulse and creates a finite detector dead-time that ultimately prevents the detection of signal from fast relaxing spin systems, hindering the application of pulse EPR to room temperature measurements of interesting chemical or biological systems. We employ a recently available high bandwidth arbitrary waveform generator (AWG) to produce a cancellation pulse that precisely destructively interferes with the resonant cavity ring-down. We find that we can faithfully detect EPR signal at all times immediately after, as well as during, the excitation pulse. This is a proof of concept study showcasing the capability of AWG pulses to precisely cancel out the resonator ring-down, and allow for the detection of EPR signal during the pulse itself, as well as the dead-time of the resonator. However, the applicability of this approach to conventional EPR experiments is not immediate, as it hinges on either (1) the availability of low-noise microwave sources and amplifiers to produce the necessary power for pulse EPR experiment or (2) the availability of very high conversion factor micro coil resonators that allow for pulse EPR experiments at modest microwave power.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica/métodos , Algoritmos , Análise de Fourier , Micro-Ondas , Poliestirenos/química , Temperatura
15.
Nucleic Acids Res ; 43(2): 1056-68, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25550423

RESUMO

PrimPol is a recently identified polymerase involved in eukaryotic DNA damage tolerance, employed in both re-priming and translesion synthesis mechanisms to bypass nuclear and mitochondrial DNA lesions. In this report, we investigate how the enzymatic activities of human PrimPol are regulated. We show that, unlike other TLS polymerases, PrimPol is not stimulated by PCNA and does not interact with it in vivo. We identify that PrimPol interacts with both of the major single-strand binding proteins, RPA and mtSSB in vivo. Using NMR spectroscopy, we characterize the domains responsible for the PrimPol-RPA interaction, revealing that PrimPol binds directly to the N-terminal domain of RPA70. In contrast to the established role of SSBs in stimulating replicative polymerases, we find that SSBs significantly limit the primase and polymerase activities of PrimPol. To identify the requirement for this regulation, we employed two forward mutation assays to characterize PrimPol's replication fidelity. We find that PrimPol is a mutagenic polymerase, with a unique error specificity that is highly biased towards insertion-deletion errors. Given the error-prone disposition of PrimPol, we propose a mechanism whereby SSBs greatly restrict the contribution of this enzyme to DNA replication at stalled forks, thus reducing the mutagenic potential of PrimPol during genome replication.


Assuntos
DNA Primase/metabolismo , Proteínas de Ligação a DNA/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Proteínas Mitocondriais/metabolismo , Enzimas Multifuncionais/metabolismo , Proteína de Replicação A/metabolismo , Primers do DNA/biossíntese , Replicação do DNA , Humanos , Mutagênese , Antígeno Nuclear de Célula em Proliferação/metabolismo , Domínios e Motivos de Interação entre Proteínas , Proteína de Replicação A/química
16.
J Magn Reson ; 235: 95-108, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23999530

RESUMO

We present arbitrary control over a homogenous spin system, demonstrated on a simple, home-built, electron paramagnetic resonance (EPR) spectrometer operating at 8-10 GHz (X-band) and controlled by a 1 GHz arbitrary waveform generator (AWG) with 42 dB (i.e. 14-bit) of dynamic range. Such a spectrometer can be relatively easily built from a single DAC (digital to analog converter) board with a modest number of stock components and offers powerful capabilities for automated digital calibration and correction routines that allow it to generate shaped X-band pulses with precise amplitude and phase control. It can precisely tailor the excitation profiles "seen" by the spins in the microwave resonator, based on feedback calibration with experimental input. We demonstrate the capability to generate a variety of pulse shapes, including rectangular, triangular, Gaussian, sinc, and adiabatic rapid passage waveforms. We then show how one can precisely compensate for the distortion and broadening caused by transmission into the microwave cavity in order to optimize corrected waveforms that are distinctly different from the initial, uncorrected waveforms. Specifically, we exploit a narrow EPR signal whose width is finer than the features of any distortions in order to map out the response to a short pulse, which, in turn, yields the precise transfer function of the spectrometer system. This transfer function is found to be consistent for all pulse shapes in the linear response regime. In addition to allowing precise waveform shaping capabilities, the spectrometer presented here offers complete digital control and calibration of the spectrometer that allows one to phase cycle the pulse phase with 0.007° resolution and to specify the inter-pulse delays and pulse durations to ≤ 250 ps resolution. The implications and potential applications of these capabilities will be discussed.


Assuntos
Conversão Análogo-Digital , Espectroscopia de Ressonância de Spin Eletrônica/instrumentação , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Calibragem , Campos Eletromagnéticos , Eletrônica , Desenho de Equipamento , Análise de Fourier , Micro-Ondas , Distribuição Normal , Processamento de Sinais Assistido por Computador/instrumentação , Razão Sinal-Ruído , Software , Análise de Ondaletas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA