Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
ACG Case Rep J ; 11(6): e01363, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38841705

RESUMO

Phentermine is an amine anorectic that acts as a sympathomimetic agent and undergoes hepatic metabolism predominantly through CYP3A4. It is commonly used as a mediation to facilitate weight loss. Side effects of phentermine can include pulmonary hypertension, valvular heart disease, palpitations, increased heart rate or blood pressure, diarrhea, and cognitive impairment. Very rarely, phentermine usage has been associated with causing ischemic colitis. The mechanism of action for ischemic colitis from phentermine is not well defined but will be discussed in this review. We present a case of a woman who used phentermine daily for weight loss and was endoscopically confirmed to have ischemic colitis after presenting with abdominal pain and bloody diarrhea.

2.
Cancer Discov ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38591846

RESUMO

Cancer cells exhibit phenotypical plasticity and epigenetic reprogramming, which allows them to evade lineage-dependent targeted treatments by adopting lineage plasticity. The underlying mechanisms by which cancer cells exploit the epigenetic regulatory machinery to acquire lineage plasticity and therapy resistance remain poorly understood. We identified Zinc Finger Protein 397 (ZNF397) as a bona fide coactivator of the androgen receptor (AR), essential for the transcriptional program governing AR-driven luminal lineage. ZNF397 deficiency facilitates the transition of cancer cell from an AR-driven luminal lineage to a Ten-Eleven Translocation 2 (TET2)-driven lineage plastic state, ultimately promoting resistance to therapies inhibiting AR signaling. Intriguingly, our findings indicate that a TET2 inhibitor can eliminate the resistance to AR targeted therapies in ZNF397-deficient tumors. These insights uncover a novel mechanism through which prostate cancer acquires lineage plasticity via epigenetic rewiring and offer promising implications for clinical interventions designed to overcome therapy resistance dictated by lineage plasticity.

3.
bioRxiv ; 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37961351

RESUMO

Cancer cells exhibit phenotypical plasticity and epigenetic reprogramming, which allows them to evade lineage-dependent targeted treatments by adopting lineage plasticity. The underlying mechanisms by which cancer cells exploit the epigenetic regulatory machinery to acquire lineage plasticity and therapy resistance remain poorly understood. We identified Zinc Finger Protein 397 (ZNF397) as a bona fide co-activator of the androgen receptor (AR), essential for the transcriptional program governing AR-driven luminal lineage. ZNF397 deficiency facilitates the transition of cancer cell from an AR-driven luminal lineage to a Ten-Eleven Translocation 2 (TET2)-driven lineage plastic state, ultimately promoting resistance to therapies inhibiting AR signaling. Intriguingly, our findings indicate that TET2 inhibitor can eliminate the AR targeted therapies resistance in ZNF397-deficient tumors. These insights uncover a novel mechanism through which prostate and breast cancers acquire lineage plasticity via epigenetic rewiring and offer promising implications for clinical interventions designed to overcome therapy resistance dictated by lineage plasticity. Statement of Significance: This study reveals a novel epigenetic mechanism regulating tumor lineage plasticity and therapy response, enhances understanding of drug resistance and unveils a new therapeutic strategy for prostate cancer and other malignancies. Our findings also illuminate TET2's oncogenic role and mechanistically connect TET2-driven epigenetic rewiring to lineage plasticity and therapy resistance.

4.
J Allied Health ; 52(1): 44-50, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36892860

RESUMO

PURPOSE: The purposes of this study were to: 1) report levels of self-perceived grit among students in accredited Doctor of Physical Therapy (DPT) programs; 2) explore comparisons between grit and personal student factors; and 3) compare grit scores of DPT student to students in other healthcare professions. METHODS: 1,524 enrolled students were surveyed from accredited DPT programs in the US in this cross-sectional research study. Surveys consisted of the 12-item Grit-O questionnaire and an additional questionnaire asking for a report of personal student factors. Non-parametric inferential statistics were conducted to compare Grit-O scores across categories of gender identity, age groups, year in school, race/ethnicity, and employment status of respondents. One-sample t-tests were used to compare DPT grit scores to those of students in other health professions previously reported in the literature. RESULTS: DPT students from 68 programs responded to the surveys reporting mean grit score of 3.95 (± 0.45 SD) and median grit score of 4.00 (interquartile range [IQR] 3.75-4.25). Grit-O subscores in consistency of interest and perseverance of effort had median scores of 3.67 (IQR 3.17- 4.00) and 4.50 (IQR 4.17-4.67), respectively. Consistency of interest subscores were significantly greater in older students, and perseverance of effort subscores were statistically greater in African American respondents. In comparison to other studies, DPT grit scores were greater than nursing and pharmacy students and were comparable to medical students. CONCLUSION: DPT students who responded to our surveys perceive themselves as possessing relatively high levels of grit, especially in perseverance of effort.


Assuntos
Fisioterapeutas , Estudantes de Medicina , Humanos , Masculino , Feminino , Idoso , Estudos Transversais , Identidade de Gênero , Inquéritos e Questionários , Modalidades de Fisioterapia
5.
FEBS J ; 290(1): 7-27, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-34687129

RESUMO

Within the growing field of amino acid metabolism, tryptophan (Trp) catabolism is an area of increasing interest. Trp is essential for protein synthesis, and its metabolism gives rise to biologically active catabolites including serotonin and numerous metabolites in the kynurenine (Kyn) pathway. In normal tissues, the production of Trp metabolites is directly regulated by the tissue-specific expression of Trp-metabolizing enzymes. Alterations of these enzymes in cancers can shift the balance and lead to an increased production of specific byproducts that can function as oncometabolites. For example, increased expression of the enzyme indoleamine 2,3-dioxygenase, which converts Trp into Kyn, leads to an increase in Kyn levels in numerous cancers. Kyn functions as an oncometabolite in cancer cells by promoting the activity of the transcription factor aryl hydrocarbon receptor, which regulates progrowth genes. Moreover, Kyn also inhibits T-cell activity and thus allows cancer cells to evade clearance by the immune system. Therefore, targeting the Kyn pathway has become a therapeutic focus as a novel means to abrogate tumor growth and immune resistance. This review summarizes the biological role and regulation of Trp metabolism and its catabolites with an emphasis on tumor cell growth and immune evasion and outlines areas for future research focus.


Assuntos
Neoplasias , Triptofano , Humanos , Triptofano/metabolismo , Cinurenina/metabolismo , Neoplasias/genética , Neoplasias/terapia , Triptofano Oxigenase/genética , Linfócitos T/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo
6.
Nat Commun ; 13(1): 7447, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36460671

RESUMO

Control of RNA Polymerase II (pol II) elongation is a critical component of gene expression in mammalian cells. The PNUTS-PP1 complex controls elongation rates, slowing pol II after polyadenylation sites to promote termination. The Kaposi's sarcoma-associated herpesvirus (KSHV) co-opts pol II to express its genes, but little is known about its regulation of pol II elongation. We identified PNUTS as a suppressor of a KSHV reporter gene in a genome-wide CRISPR screen. PNUTS depletion enhances global KSHV gene expression and overall viral replication. Mechanistically, PNUTS requires PP1 interaction, binds viral RNAs downstream of polyadenylation sites, and restricts transcription readthrough of viral genes. Surprisingly, PNUTS also represses productive elongation at the 5´ ends of the KSHV reporter and the KSHV T1.4 RNA. From these data, we conclude that PNUTS' activity constitutes an intrinsic barrier to KSHV replication likely by suppressing pol II elongation at promoter-proximal regions.


Assuntos
Herpesviridae , Herpesvirus Humano 8 , Mieloma Múltiplo , Sarcoma de Kaposi , Animais , Herpesvirus Humano 8/genética , Nucleotidiltransferases , RNA Viral/genética , Transcrição Gênica , Mamíferos
7.
Front Med Technol ; 4: 1004976, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36530549

RESUMO

Treating open fractures in long bones can be challenging and if not performed properly can lead to poor outcomes such as mal/non-union, deformity, and amputation. One of the most common methods of treating these fracture types is temporary external fixation followed by definitive fixation. The shortage of high-quality affordable external fixators is a long-recognised need, particularly in Low- and Middle-Income Countries (LMICs). This research aimed to develop a low-cost device that can be manufactured locally to international standards. This can provide surge capacity for conflict zones or in response to unpredictable incidents and situations. The fixator presented here and developed by us, the Imperial external fixator, was tested on femur and tibia specimens under 100 cycles of 100 N compression-tension and the results were compared with those of the Stryker Hoffmann 3 frame. The Imperial device was stiffer than the Stryker Hoffmann 3 with a lower median interfragmentary motion (of 0.94 vs. 1.48 mm). The low-cost, easy to use, relatively lightweight, and easy to manufacture (since minimum skillset and basic workshop equipment and materials are needed) device can address a critical shortage and need in LMICs particularly in conflict-affected regions with unpredictable demand and supply. The device is currently being piloted in three countries for road traffic accidents, gunshot wounds and other conflict trauma-including blast cohorts.

8.
Stem Cell Reports ; 17(10): 2334-2348, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36150381

RESUMO

After injury, a cascade of events repairs the damaged tissue, including expansion and differentiation of the progenitor pool and redeposition of matrix. To guide future wound regeneration strategies, we compared single-cell sequencing of regenerative (third phalangeal element [P3]) and fibrotic (second phalangeal element [P2]) digit tip amputation (DTA) models as well as traumatic heterotopic ossification (HO; aberrant). Analyses point to a common initial response to injury, including expansion of progenitors, redeposition of matrix, and activation of transforming growth factor ß (TGF-ß) and WNT pathways. Surprisingly, fibrotic P2 DTA showed greater transcriptional similarity to HO than to regenerative P3 DTA, suggesting that gene expression more strongly correlates with healing outcome than with injury type or cell origin. Differential analysis and immunostaining revealed altered activation of inflammatory pathways, such as the complement pathway, in the progenitor cells. These data suggests that common pathways are activated in response to damage but are fine tuned within each injury. Modulating these pathways may shift the balance toward regenerative outcomes.


Assuntos
Osso e Ossos , Sistema Musculoesquelético , Ossificação Heterotópica , Regeneração , Amputação Cirúrgica , Osso e Ossos/lesões , Diferenciação Celular , Humanos , Sistema Musculoesquelético/lesões , Fator de Crescimento Transformador beta
9.
Cancer Immunol Res ; 10(7): 829-843, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35561311

RESUMO

The MYC oncogene is frequently amplified in triple-negative breast cancer (TNBC). Here, we show that MYC suppression induces immune-related hallmark gene set expression and tumor-infiltrating T cells in MYC-hyperactivated TNBCs. Mechanistically, MYC repressed stimulator of interferon genes (STING) expression via direct binding to the STING1 enhancer region, resulting in downregulation of the T-cell chemokines CCL5, CXCL10, and CXCL11. In primary and metastatic TNBC cohorts, tumors with high MYC expression or activity exhibited low STING expression. Using a CRISPR-mediated enhancer perturbation approach, we demonstrated that MYC-driven immune evasion is mediated by STING repression. STING repression induced resistance to PD-L1 blockade in mouse models of TNBC. Finally, a small-molecule inhibitor of MYC combined with PD-L1 blockade elicited a durable response in immune-cold TNBC with high MYC expression, suggesting a strategy to restore PD-L1 inhibitor sensitivity in MYC-overexpressing TNBC.


Assuntos
Proteínas de Membrana/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Neoplasias de Mama Triplo Negativas , Animais , Antígeno B7-H1 , Linhagem Celular Tumoral , Repressão Epigenética , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Evasão da Resposta Imune , Camundongos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia
10.
Mol Cell ; 82(1): 60-74.e5, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34995509

RESUMO

Acetyl-CoA is a key intermediate situated at the intersection of many metabolic pathways. The reliance of histone acetylation on acetyl-CoA enables the coordination of gene expression with metabolic state. Abundant acetyl-CoA has been linked to the activation of genes involved in cell growth or tumorigenesis through histone acetylation. However, the role of histone acetylation in transcription under low levels of acetyl-CoA remains poorly understood. Here, we use a yeast starvation model to observe the dramatic alteration in the global occupancy of histone acetylation following carbon starvation; the location of histone acetylation marks shifts from growth-promoting genes to gluconeogenic and fat metabolism genes. This reallocation is mediated by both the histone deacetylase Rpd3p and the acetyltransferase Gcn5p, a component of the SAGA transcriptional coactivator. Our findings reveal an unexpected switch in the specificity of histone acetylation to promote pathways that generate acetyl-CoA for oxidation when acetyl-CoA is limiting.


Assuntos
Gluconeogênese , Glucose/deficiência , Histonas/metabolismo , Metabolismo dos Lipídeos , Processamento de Proteína Pós-Traducional , Saccharomyces cerevisiae/metabolismo , Acetilcoenzima A/metabolismo , Acetilação , Regulação Fúngica da Expressão Gênica , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Metabolismo dos Lipídeos/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transativadores/genética , Transativadores/metabolismo
11.
Mod Pathol ; 35(3): 333-343, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34538873

RESUMO

Low-grade oncocytic tumor (LOT) of the kidney is a recently described entity with poorly understood pathogenesis. Using next-generation sequencing (NGS) and complementary approaches, we provide insight into its biology. We describe 22 LOT corresponding to 7 patients presenting with a median age of 75 years (range 63-86 years) and male to female ratio 2:5. All 22 tumors demonstrated prototypical microscopic features. Tumors were well-circumscribed and solid. They were composed of sheets of tumor cells in compact nests. Tumor cells had eosinophilic cytoplasm, round to oval nuclei (without nuclear membrane irregularities), focal subtle perinuclear halos, and occasional binucleation. Sharply delineated edematous stromal islands were often observed. Tumor cells were positive for PAX8, negative for CD117, and exhibited diffuse and strong cytokeratin-7 expression. Six patients presented with pT1 tumors. At a median follow-up of 29 months, four patients were alive without recurrence (three patients had died from unrelated causes). All tumors were originally classified as chromophobe renal cell carcinoma, eosinophilic variant (chRCC-eo). While none of the patients presented with known syndromic features, one patient with multiple bilateral LOTs was subsequently found to have a likely pathogenic germline TSC1 mutation. Somatic, likely activating, mutations in MTOR and RHEB were identified in all other evaluable LOTs. As assessed by phospho-S6 and phospho-4E-BP1, mTOR complex 1 (mTORC1) was activated across all cases but to different extent. MTOR mutant LOT exhibited lower levels of mTORC1 activation, possibly related to mTORC1 dimerization and the preservation of a wild-type MTOR copy (retained chromosome 1). Supporting its distinction from related entities, gene expression analyses showed that LOT clustered separately from classic chRCC, chRCC-eo, and RO. In summary, converging mTORC1 pathway mutations, mTORC1 complex activation, and a distinctive gene expression signature along with characteristic phenotypic features support LOT designation as a distinct entity with both syndromic and non-syndromic cases associated with an indolent course.


Assuntos
Adenoma Oxífilo , Carcinoma de Células Renais , Neoplasias Renais , Adenoma Oxífilo/genética , Adenoma Oxífilo/patologia , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/genética , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Feminino , Células Germinativas/química , Células Germinativas/patologia , Humanos , Rim/patologia , Neoplasias Renais/genética , Neoplasias Renais/patologia , Masculino , Pessoa de Meia-Idade , Mutação , Serina-Treonina Quinases TOR/genética
12.
PLoS Genet ; 16(11): e1009117, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33201894

RESUMO

Glioblastoma is the most common and aggressive type of cancer in the brain; its poor prognosis is often marked by reoccurrence due to resistance to the chemotherapeutic agent temozolomide, which is triggered by an increase in the expression of DNA repair enzymes such as MGMT. The poor prognosis and limited therapeutic options led to studies targeted at understanding specific vulnerabilities of glioblastoma cells. Metabolic adaptations leading to increased synthesis of nucleotides by de novo biosynthesis pathways are emerging as key alterations driving glioblastoma growth. In this study, we show that enzymes necessary for the de novo biosynthesis of pyrimidines, DHODH and UMPS, are elevated in high grade gliomas and in glioblastoma cell lines. We demonstrate that DHODH's activity is necessary to maintain ribosomal DNA transcription (rDNA). Pharmacological inhibition of DHODH with the specific inhibitors brequinar or ML390 effectively depleted the pool of pyrimidines in glioblastoma cells grown in vitro and in vivo and impaired rDNA transcription, leading to nucleolar stress. Nucleolar stress was visualized by the aberrant redistribution of the transcription factor UBF and the nucleolar organizer nucleophosmin 1 (NPM1), as well as the stabilization of the transcription factor p53. Moreover, DHODH inhibition decreased the proliferation of glioblastoma cells, including temozolomide-resistant cells. Importantly, the addition of exogenous uridine, which reconstitutes the cellular pool of pyrimidine by the salvage pathway, to the culture media recovered the impaired rDNA transcription, nucleolar morphology, p53 levels, and proliferation of glioblastoma cells caused by the DHODH inhibitors. Our in vivo data indicate that while inhibition of DHODH caused a dramatic reduction in pyrimidines in tumor cells, it did not affect the overall pyrimidine levels in normal brain and liver tissues, suggesting that pyrimidine production by the salvage pathway may play an important role in maintaining these nucleotides in normal cells. Our study demonstrates that glioblastoma cells heavily rely on the de novo pyrimidine biosynthesis pathway to generate ribosomal RNA (rRNA) and thus, we identified an approach to inhibit ribosome production and consequently the proliferation of glioblastoma cells through the specific inhibition of the de novo pyrimidine biosynthesis pathway.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Nucléolo Celular/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Pirimidinas/biossíntese , Animais , Antineoplásicos/uso terapêutico , Compostos de Bifenilo/farmacologia , Compostos de Bifenilo/uso terapêutico , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Nucléolo Celular/metabolismo , Di-Hidro-Orotato Desidrogenase , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Glioblastoma/patologia , Humanos , Camundongos , Complexos Multienzimáticos/antagonistas & inibidores , Complexos Multienzimáticos/metabolismo , Nucleofosmina , Orotato Fosforribosiltransferase/antagonistas & inibidores , Orotato Fosforribosiltransferase/metabolismo , Orotidina-5'-Fosfato Descarboxilase/antagonistas & inibidores , Orotidina-5'-Fosfato Descarboxilase/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , RNA Ribossômico/biossíntese , Ribossomos/efeitos dos fármacos , Ribossomos/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Nat Metab ; 2(11): 1332-1349, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33139957

RESUMO

Chronic low-grade white adipose tissue (WAT) inflammation is a hallmark of metabolic syndrome in obesity. Here, we demonstrate that a subpopulation of mouse WAT perivascular (PDGFRß+) cells, termed fibro-inflammatory progenitors (FIPs), activate proinflammatory signalling cascades shortly after the onset of high-fat diet feeding and regulate proinflammatory macrophage accumulation in WAT in a TLR4-dependent manner. FIPs activation in obesity is mediated by the downregulation of zinc-finger protein 423 (ZFP423), identified here as a transcriptional corepressor of NF-κB. ZFP423 suppresses the DNA-binding capacity of the p65 subunit of NF-κB by inducing a p300-to-NuRD coregulator switch. Doxycycline-inducible expression of Zfp423 in PDGFRß+ cells suppresses inflammatory signalling in FIPs and attenuates metabolic inflammation of visceral WAT in obesity. Inducible inactivation of Zfp423 in PDGFRß+ cells increases FIP activity, exacerbates adipose macrophage accrual and promotes WAT dysfunction. These studies implicate perivascular mesenchymal cells as important regulators of chronic adipose-tissue inflammation in obesity and identify ZFP423 as a transcriptional break on NF-κB signalling.


Assuntos
Tecido Adiposo Branco/patologia , Macrófagos/patologia , Células-Tronco Mesenquimais , Obesidade/patologia , Animais , Proteínas de Ligação a DNA/metabolismo , Dieta Hiperlipídica , Hipoglicemiantes/farmacologia , Insulina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo , Fator de Transcrição RelA/metabolismo , Fatores de Transcrição/metabolismo
14.
PeerJ ; 8: e10028, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33088615

RESUMO

INTRODUCTION: The fabella is a sesamoid bone embedded in the tendon of the lateral head of the gastrocnemius. It is the only bone in the human body to increase in prevalence in the last 100 years. As the fabella can serve as an origin/insertion for muscles, tendons, and/or ligaments (e.g., the oblique popliteal and fabellofibular ligaments), temporal changes in fabella prevalence could lead to temporal changes in "standard" knee anatomy. The aim of this study was to investigate unique myological changes to the posterolateral corner knee associated with ossified fabella presence and perform a systematic review to contextualize our results. METHODS: Thirty-three fresh frozen cadaveric knees were considered. As the knees were all used for previous experimentation, the knees were in variable levels of preservation. Those with adequate preservation were used to determine ossified fabella presence/absence. When ossified fabellae were present, unique myologies associated with the fabella were recorded. A systematic review was performed on the double-headed popliteus to investigate possible correlations between this anatomical variant and the fabella. RESULTS: Of the 33 knees, 30 preserved enough soft tissue to determine fabella presence/absence: 16/30 knees had fabellae (five cartilaginous and 11 ossified). Eight of the eleven knees with ossified fabellae retained enough soft tissue to investigate the posterolateral knee anatomy. Of these, 4/8 exhibited unique myological changes. One knee had a double-headed popliteus muscle where one head originated from the medial side of a large, bulbous fabella. A systematic review revealed double-headed popliteus muscles are rare, but individuals are 3.7 times more likely to have a fabella if they have a double-headed popliteus. Another knee had a large, thick ligament stretching from the lateral edge of the fabella to the inferoposterior edge of the lateral femoral epicondyle, deep to the lateral collateral ligament (LCL) and near the popliteal sulcus. We found no mention of such a ligament in the literature and refer to it here as the "femorofabellar ligament". In all four knees, the plantaris and lateral gastrocnemius appeared to share a common tendinous origin, and the fabella was located at/near the junction of these muscles. In the case of the double-headed popliteus, the fabella clearly served as an origin for the plantaris. CONCLUSIONS: Despite being found in an average of 36.80% of human knees, most standard anatomical models fail to account for the fabella and/or the unique myological changes associated with fabella presence. Although our sample is small, these data highlight aspects of human biological variability generally not considered when creating generalized anatomical models. Further work is needed to identify additional changes associated with ossified fabellae and the functional consequences of omitting these changes from models.

15.
Cancer Cell ; 38(2): 279-296.e9, 2020 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-32679108

RESUMO

Despite the development of second-generation antiandrogens, acquired resistance to hormone therapy remains a major challenge in treating advanced prostate cancer. We find that cancer-associated fibroblasts (CAFs) can promote antiandrogen resistance in mouse models and in prostate organoid cultures. We identify neuregulin 1 (NRG1) in CAF supernatant, which promotes resistance in tumor cells through activation of HER3. Pharmacological blockade of the NRG1/HER3 axis using clinical-grade blocking antibodies re-sensitizes tumors to hormone deprivation in vitro and in vivo. Furthermore, patients with castration-resistant prostate cancer with increased tumor NRG1 activity have an inferior response to second-generation antiandrogen therapy. This work reveals a paracrine mechanism of antiandrogen resistance in prostate cancer amenable to clinical testing using available targeted therapies.


Assuntos
Antagonistas de Androgênios/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Neuregulina-1/genética , Neoplasias da Próstata/genética , Microambiente Tumoral/genética , Animais , Fibroblastos Associados a Câncer/efeitos dos fármacos , Fibroblastos Associados a Câncer/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Células Cultivadas , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Estimativa de Kaplan-Meier , Masculino , Camundongos SCID , Neuregulina-1/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/prevenção & controle , Microambiente Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
16.
J Biol Chem ; 295(35): 12398-12407, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32611766

RESUMO

The transcription factor AHR (aryl hydrocarbon receptor) drives the expression of genes involved in detoxification pathways in cells exposed to pollutants and other small molecules. Moreover, AHR supports transcriptional programs that promote ribosome biogenesis and protein synthesis in cells stimulated to proliferate by the oncoprotein MYC. Thus, AHR is necessary for the proliferation of MYC-overexpressing cells. To define metabolic pathways in which AHR cooperates with MYC in supporting cell growth, here we used LC-MS-based metabolomics to examine the metabolome of MYC-expressing cells upon AHR knockdown. We found that AHR knockdown reduced lactate, S-lactoylglutathione, N-acetyl-l-alanine, 2-hydroxyglutarate, and UMP levels. Using our previously obtained RNA sequencing data, we found that AHR mediates the expression of the UMP-generating enzymes dihydroorotate dehydrogenase (quinone) (DHODH) and uridine monophosphate synthetase (UMPS), as well as lactate dehydrogenase A (LDHA), establishing a mechanism by which AHR regulates lactate and UMP production in MYC-overexpressing cells. AHR knockdown in glioblastoma cells also reduced the expression of LDHA (and lactate), DHODH, and UMPS but did not affect UMP levels, likely because of compensatory mechanisms in these cells. Our results indicate that AHR contributes to the regulation of metabolic pathways necessary for the proliferation of transformed cells.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Redes e Vias Metabólicas , Proteínas Proto-Oncogênicas c-myc/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Linhagem Celular Tumoral , Di-Hidro-Orotato Desidrogenase , Regulação Enzimológica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , L-Lactato Desidrogenase/biossíntese , L-Lactato Desidrogenase/genética , Complexos Multienzimáticos/biossíntese , Complexos Multienzimáticos/genética , Orotato Fosforribosiltransferase/biossíntese , Orotato Fosforribosiltransferase/genética , Orotidina-5'-Fosfato Descarboxilase/biossíntese , Orotidina-5'-Fosfato Descarboxilase/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/biossíntese , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Proteínas Proto-Oncogênicas c-myc/genética , Receptores de Hidrocarboneto Arílico/genética
17.
Cancer Cell ; 37(4): 584-598.e11, 2020 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-32220301

RESUMO

Metastatic prostate cancer is characterized by recurrent genomic copy number alterations that are presumed to contribute to resistance to hormone therapy. We identified CHD1 loss as a cause of antiandrogen resistance in an in vivo small hairpin RNA (shRNA) screen of 730 genes deleted in prostate cancer. ATAC-seq and RNA-seq analyses showed that CHD1 loss resulted in global changes in open and closed chromatin with associated transcriptomic changes. Integrative analysis of this data, together with CRISPR-based functional screening, identified four transcription factors (NR3C1, POU3F2, NR2F1, and TBX2) that contribute to antiandrogen resistance, with associated activation of non-luminal lineage programs. Thus, CHD1 loss results in chromatin dysregulation, thereby establishing a state of transcriptional plasticity that enables the emergence of antiandrogen resistance through heterogeneous mechanisms.


Assuntos
Antagonistas de Androgênios/farmacologia , Cromatina/genética , DNA Helicases/antagonistas & inibidores , Proteínas de Ligação a DNA/antagonistas & inibidores , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , RNA Interferente Pequeno/genética , Receptores Androgênicos/química , Animais , Apoptose , Biomarcadores Tumorais/genética , Proliferação de Células , Cromatina/metabolismo , DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação Neoplásica da Expressão Gênica , Ensaios de Triagem em Larga Escala , Humanos , Masculino , Camundongos , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Receptores Androgênicos/genética , Fatores de Transcrição/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Cell Commun Signal ; 17(1): 129, 2019 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-31623618

RESUMO

BACKGROUND: While regulated WNT activity is required for normal development and stem cell maintenance, mutations that lead to constitutive activation of the WNT pathway cause cellular transformation and drive colorectal cancer. Activation of the WNT pathway ultimately leads to the nuclear translocation of ß-catenin which, in complex with TCF/LEF factors, promotes the transcription of genes necessary for growth. The proto-oncogene MYC is one of the most critical genes activated downstream the WNT pathway in colon cancer. Here, we investigate the converse regulation of the WNT pathway by MYC. METHODS: We performed RNA-seq analyses to identify genes regulated in cells expressing MYC. We validated the regulation of genes in the WNT pathway including LEF1 by MYC using RT-qPCR, Western blotting, and ChIP-seq. We investigated the importance of LEF1 for the viability of MYC-expressing cells in in fibroblasts, epithelial cells, and colon cells. Bioinformatic analyses were utilized to define the expression of MYC-regulated genes in human colon cancer and metabolomics analyses were used to identify pathways regulated by LEF1 in MYC expressing cells. RESULTS: MYC regulates the levels of numerous WNT-related genes, including the ß-catenin co-transcription factor LEF1. MYC activates the transcription of LEF1 and is required for LEF1 expression in colon cancer cells and in primary colonic cells transformed by APC loss of function, a common mutation in colon cancer patients. LEF1 caused the retention of ß-catenin in the nucleus, leading to the activation of the WNT pathway in MYC-expressing cells. Consequently, MYC-expressing cells were sensitive to LEF1 inhibition. Moreover, we describe two examples of genes induced in MYC-expressing cells that require LEF1 activity: the peroxisome proliferator activated receptor delta (PPARδ) and the Acyl CoA dehydrogenase 9 (ACAD9). CONCLUSIONS: We demonstrated that MYC is a transcriptional regulator of LEF1 in colonic cells. Our work proposes a novel pathway by which MYC regulates proliferation through activating LEF1 expression which in turn activates the WNT pathway.


Assuntos
Fator 1 de Ligação ao Facilitador Linfoide/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Ativação Transcricional , Via de Sinalização Wnt , Acil-CoA Desidrogenases/genética , Linhagem Celular , Proliferação de Células , Neoplasias do Colo/patologia , Técnicas de Silenciamento de Genes , Humanos , Fator 1 de Ligação ao Facilitador Linfoide/deficiência , PPAR delta/genética , Proto-Oncogene Mas , beta Catenina/metabolismo
19.
J Orthop Res ; 37(10): 2104-2111, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31166039

RESUMO

In comparison to through-knee amputees the outcomes for above-the-knee amputees are relatively poor; based on this novel techniques have been developed. Most current percutaneous implant-based solutions for transfemoral amputees make use of high stiffness intramedullary rods for skeletal fixation, which can have risks including infection, femoral fractures, and bone resorption due to stress shielding. This work details the cadaveric testing of a short, cortical bone stiffness-matched subcutaneous implant, produced using additive manufacture, to determine bone implant micromotion and push-out load. The results for the micromotions were all <20 µm and the mean push-out load was 2,099 Newtons. In comparison to a solid control, the stiffness-matched implant exhibited significantly higher micromotion distributions and no significant difference in terms of push-out load. These results suggest that, for the stiffness-matched implant at time zero, osseointegration would be facilitated and that the implant would be securely anchored. For these metrics, this provides justification for the use of a short-stem implant for transfemoral amputees in this subcutaneous application. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:2104-2111, 2019.


Assuntos
Cotos de Amputação , Prótese Ancorada no Osso , Idoso , Idoso de 80 Anos ou mais , Amputação Cirúrgica , Feminino , Fêmur/cirurgia , Humanos , Masculino , Pessoa de Meia-Idade
20.
Bioinformatics ; 35(23): 5018-5029, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31099391

RESUMO

MOTIVATION: Activity of transcriptional regulators is crucial in elucidating the mechanism of phenotypes. However regulatory activity hypotheses are difficult to experimentally test. Therefore, we need accurate and reliable computational methods for regulator activity inference. There is extensive work in this area, however, current methods have difficulty with one or more of the following: resolving activity of TFs with overlapping regulons, reflecting known regulatory relationships, or flexible modeling of TF activity over the regulon. RESULTS: We present Effector and Perturbation Estimation Engine (EPEE), a method for differential analysis of transcription factor (TF) activity from gene expression data. EPEE addresses each of these principal challenges in the field. Firstly, EPEE collectively models all TF activity in a single multivariate model, thereby accounting for the intrinsic coupling among TFs that share targets, which is highly frequent. Secondly, EPEE incorporates context-specific TF-gene regulatory networks and therefore adapts the analysis to each biological context. Finally, EPEE can flexibly reflect different regulatory activity of a single TF among its potential targets. This allows the flexibility to implicitly recover other regulatory influences such as co-activators or repressors. We comparatively validated EPEE in 15 datasets from three well-studied contexts, namely immunology, cancer, and hematopoiesis. We show that addressing the aforementioned challenges enable EPEE to outperform alternative methods and reliably produce accurate results. AVAILABILITY AND IMPLEMENTATION: https://github.com/Cobanoglu-Lab/EPEE. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Regulação da Expressão Gênica , Expressão Gênica , Regulon , Fatores de Transcrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA