Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 8734, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627460

RESUMO

This research aimed to determine whether accomplished surfers could accurately perceive how changes to surfboard fin design affected their surfing performance. Four different surfboard fins, including conventional, single-grooved, and double-grooved fins, were developed using computer-aided design combined with additive manufacturing (3D printing). We systematically installed these 3D-printed fins into instrumented surfboards, which six accomplished surfers rode on waves in the ocean in a random order while blinded to the fin condition. We quantified the surfers' wave-riding performance during each surfing bout using a sport-specific tracking device embedded in each instrumented surfboard. After each fin condition, the surfers rated their perceptions of the Drive, Feel, Hold, Speed, Stiffness, and Turnability they experienced while performing turns using a visual analogue scale. Relationships between the surfer's perceptions of the fins and their surfing performance data collected from the tracking devices were then examined. The results revealed that participants preferred the single-grooved fins for Speed and Feel, followed by double-grooved fins, commercially available fins, and conventional fins without grooves. Crucially, the surfers' perceptions of their performance matched the objective data from the embedded sensors. Our findings demonstrate that accomplished surfers can perceive how changes to surfboard fins influence their surfing performance.

2.
ACS Appl Mater Interfaces ; 11(4): 4353-4363, 2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30623658

RESUMO

A relative lack of printable materials with tailored functional properties limits the applicability of three-dimensional (3D) printing. In this work, a diamond-acrylonitrile butadiene styrene (ABS) composite filament for use in 3D printing was created through incorporation of high-pressure and high-temperature (HPHT) synthetic microdiamonds as a filler. Homogenously distributed diamond composite filaments, containing either 37.5 or 60 wt % microdiamonds, were formed through preblending the diamond powder with ABS, followed by subsequent multiple fiber extrusions. The thermal conductivity of the ABS base material increased from 0.17 to 0.94 W/(m·K), more than five-fold following incorporation of the microdiamonds. The elastic modulus for the 60 wt % microdiamond containing composite material increased by 41.9% with respect to pure ABS, from 1050 to 1490 MPa. The hydrophilicity also increased by 32%. A low-cost fused deposition modeling printer was customized to handle the highly abrasive composite filament by replacing the conventional (stainless-steel) filament feeding gear with a harder titanium gear. To demonstrate improved thermal performance of 3D printed devices using the new composite filament, a number of composite heat sinks were printed and characterized. Heat dissipation measurements demonstrated that 3D printed heat sinks containing 60 wt % diamond increased the thermal dissipation by 42%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA