Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Healthc Mater ; 13(16): e2302836, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38299437

RESUMO

Sustained inflammation can halt or delay wound healing, and macrophages play a central role in wound healing. Inflammatory macrophages are responsible for the removal of pathogens, debris, and neutrophils, while anti-inflammatory macrophages stimulate various regenerative processes. Recombinant human Proteoglycan 4 (rhPRG4) is shown to modulate macrophage polarization and to prevent fibrosis and scarring in ear wound healing. Here, dissolvable microneedle arrays (MNAs) carrying rhPRG4 are engineered for the treatment of skin wounds. The in vitro experiments suggest that rhPRG4 modulates the inflammatory function of bone marrow-derived macrophages. Degradable and detachable microneedles are developed from gelatin methacryloyl (GelMA) attach to a dissolvable gelatin backing. The developed MNAs are able to deliver a high dose of rhPRG4 through the dissolution of the gelatin backing post-injury, while the GelMA microneedles sustain rhPRG4 bioavailability over the course of treatment. In vivo results in a murine model of full-thickness wounds with impaired healing confirm a decrease in inflammatory biomarkers such as TNF-α and IL-6, and an increase in angiogenesis and collagen deposition. Collectively, these results demonstrate rhPRG4-incorporating MNA is a promising platform in skin wound healing applications.


Assuntos
Gelatina , Agulhas , Pele , Cicatrização , Animais , Cicatrização/efeitos dos fármacos , Humanos , Pele/lesões , Pele/efeitos dos fármacos , Camundongos , Gelatina/química , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/imunologia , Proteoglicanas/química , Proteoglicanas/farmacologia , Camundongos Endogâmicos C57BL , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/farmacologia , Metacrilatos
2.
Adv Healthc Mater ; 10(13): e2001922, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34050600

RESUMO

Microneedle arrays (MNAs) have been used for decades to deliver drugs transdermally and avoid the obstacles of other delivery routes. Hydrogels are another popular method for delivering therapeutics because they provide tunable, controlled release of their encapsulated payload. However, hydrogels are not strong or stiff, and cannot be formed into constructs that penetrate the skin. Accordingly, it has so far been impossible to combine the transdermal delivery route provided by MNAs with the therapeutic encapsulation potential of hydrogels. To address this challenge, a low cost and simple, but robust, strategy employing MNAs is developed. These MNAs are formed from a rigid outer layer, 3D printed onto a conformal backing, and filled with drug-eluting hydrogels. Microneedles of different lengths are fabricated on a single patch, facilitating the delivery of various agents to different tissue depths. In addition to spatial distribution, temporal release kinetics can be controlled by changing the hydrogel composition or the needles' geometry. As a proof-of-concept, MNAs are used for the delivery of vascular endothelial growth factor (VEGF). Application of the rigid, resin-based outer layer allows the use of hydrogels regardless of their mechanical properties and makes these multicomponent MNAs suitable for a range of drug delivery applications.


Assuntos
Hidrogéis , Fator A de Crescimento do Endotélio Vascular , Administração Cutânea , Sistemas de Liberação de Medicamentos , Microinjeções , Agulhas , Impressão Tridimensional , Pele
3.
Adv Healthc Mater ; 10(8): e2001800, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33586339

RESUMO

A major impediment preventing normal wound healing is insufficient vascularization, which causes hypoxia, poor metabolic support, and dysregulated physiological responses to injury. To combat this, the delivery of angiogenic factors, such as vascular endothelial growth factor (VEGF), has been shown to provide modest improvement in wound healing. Here, the importance of specialty delivery systems is explored in controlling wound bed drug distribution and consequently improving healing rate and quality. Two intradermal drug delivery systems, miniaturized needle arrays (MNAs) and liquid jet injectors (LJIs), are evaluated to compare effective VEGF delivery into the wound bed. The administered drug's penetration depth and distribution in tissue are significantly different between the two technologies. These systems' capability for efficient drug delivery is first confirmed in vitro and then assessed in vivo. While topical administration of VEGF shows limited effectiveness, intradermal delivery of VEGF in a diabetic murine model accelerates wound healing. To evaluate the translational feasibility of the strategy, the benefits of VEGF delivery using MNAs are assessed in a porcine model. The results demonstrate enhanced angiogenesis, reduced wound contraction, and increased regeneration. These findings show the importance of both therapeutics and delivery strategy in wound healing.


Assuntos
Preparações Farmacêuticas , Fator A de Crescimento do Endotélio Vascular , Indutores da Angiogênese , Animais , Camundongos , Neovascularização Fisiológica , Suínos , Fatores de Crescimento do Endotélio Vascular , Cicatrização
4.
Expert Opin Drug Deliv ; 17(12): 1767-1780, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32882162

RESUMO

INTRODUCTION: Chronic wounds are seen frequently in diabetic and bedbound patients. Such skin injuries, which do not heal in a timely fashion, can lead to life-threatening conditions. In an effort to resolve the burdens of chronic wounds, numerous investigations have explored the efficacy of various therapeutics on wound healing. Therapeutics can be topically delivered to cutaneous wounds to reduce the complications associated with systemic drug delivery because the compromised skin barrier is not expected to negatively affect drug distribution. However, researchers have recently demonstrated that the complex environment of chronic wounds could lower the localized availability of the applied therapeutics. Microneedle arrays (MNAs) can be exploited to enhance delivery efficiency and consequently improved healing. AREAS COVERED: In this review, we briefly describe the pathophysiology of chronic wounds and current treatment strategies. We further introduce methods and materials commonly used for the fabrication of MNAs. Subsequently, the studies demonstrating the benefits of MNAs in wound care are highlighted. EXPERT OPINION: Microneedles have great potential to treat the complicated pathophysiology of chronic wounds. Challenges that will need to be addressed include development of a robust chronic wound model and MNAs that combine complex functionality with simplicity of use.


Assuntos
Sistemas de Liberação de Medicamentos , Agulhas , Cicatrização/efeitos dos fármacos , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA