Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 130: 179-183, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29866544

RESUMO

This study estimated for the first time the total loads of plastic litter (macro- meso- and micro-plastics) in sediments of different habitat types from the Northern Adriatic Sea. Samples were collected in March 2016. The sampling sites were settled in shoreline, on the C. nodosa bottoms, Amphioxus sands, and Mäerl bed habitats. Microplastics items were present in all sampling site and ranging within 137-703 items/kg d.w. from Mäerl bed habitat to the shoreline. In C. nodosa bottoms 170 items/kg d.w. were found, while in Amphioxus sands were recorded on average 194 items/kg d.w. Due to the absence of statistical associations among litter levels and abundance of B. lanceolatum in the study area, this research present the needs to develop a new method and more research to for the evaluation of how much the interrelation between sensible habitats and microplastic exist.


Assuntos
Ecossistema , Plásticos/análise , Resíduos/estatística & dados numéricos , Alismatales , Animais , Monitoramento Ambiental/métodos , Itália , Anfioxos , Rodófitas , Dióxido de Silício , Eslovênia , Resíduos/análise
2.
Front Physiol ; 9: 1938, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30723422

RESUMO

Atrial fibrillation (AF) carries out a 5-fold increase in stroke risk, related to embolization of thrombi clotting in left atrium (LA). Left atrial appendage (LAA) is the site with the highest blood stasis which causes thrombus formation. About 90 % of the intracardiac thrombi in patients with cardioembolic events originally develop in the LAA. Recent studies have been focused on the association between LAA anatomical features and stroke risk and provided conflicting results. Haemodynamic and fluid dynamic information on the LA and mostly on the LAA may improve stroke risk stratification. Therefore, the aim of this study was the design and development of a workflow to quantitatively define the influence of the LAA morphology on LA hemodynamics. Five 3D LA anatomical models, obtained from real clinical data, which were clearly different as regard to LAA morphology were used. For each LAA we identified and computed several parameters describing its geometry. Then, one LA chamber model was chosen and a framework was developed to connect the different LAAs belonging to the other four patients to this model. These new anatomical models represented the computational domain for the computational fluid dynamics (CFD) study; simulations of the hemodynamics within the LA and LAA were performed in order to evaluate the interplay of the LAA shape on the blood flow characteristics in AF condition. CFD simulations were carried out for five cardiac cycles. Blood velocity, vorticity, LAA orifice velocity, residence time computed in the five models were compared and correlated with LAA morphologies. Results showed that not only complex morphologies were characterized by low velocities, low vorticity and consequently could carry a higher thrombogenic risk; even qualitatively simple morphologies showed a thrombogenic risk equal, or even higher, than more complex auricles. CFD results supported the hypothesis that LAA geometric characteristics plays a key-role in defining thromboembolic risk. LAA geometric parameters could be considered, coupled with the morphological characteristics, for a comprehensive evaluation of the regional blood stasis. The proposed procedure might address the development of a tool for patient-specific stroke risk assessment and preventive treatment in AF patients, relying on morpho-functional defintion of each LAA type.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA