Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Virulence ; : 2283899, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37966797

RESUMO

Macrophages are important cells of the innate immunity that play a major role in Bovine Viral Diarrhea Virus (BVDV) pathogenesis. Macrophages are not a homogenous population; they exist in different phenotypes, typically divided into two main categories: classically (pro-inflammatory) and alternatively activated (anti-inflammatory) or M1 and M2, respectively. The role of bovine macrophage phenotypes on BVDV infection is still unclear. This study characterized the interaction between BVDV, and monocyte-derived macrophages (Mo-Mφ) collected from healthy cattle and polarized to an M1 or M2 state by using LPS, INF-γ, IL-4 or azithromycin. Arginase activity quantitation was utilized as a marker of the M2 Mo-Mφ spectrum. There was a significant association between arginase activity and the replication rate of BVDV strains of different genotypes and biotypes. Inhibition of arginase activity also reduced BVDV infectivity. Calves treated with azithromycin induced Mo-Mφ of the M2 state produced high levels of arginase. Interestingly, azithromycin administered in vivo increased the susceptibility of macrophages to BVDV infection ex vivo. Mo-Mφ from pregnant dams and calves produced higher arginase levels than those from non-pregnant adult animals. The increased infection of arginase-producing alternatively activated bovine macrophages with BVDV supports the need to delve into a possible leading role of M2 macrophages in establishing the immune-suppressive state during BVDV convalescence.

2.
Front Vet Sci ; 7: 603622, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33240967

RESUMO

Interferon lambda (IFN-λ) is an antiviral naturally produced in response to viral infections, with activity on cells of epithelial origin and located in the mucosal surfaces. This localized activity results in reduced toxicity compared to type I IFNs, whose receptors are ubiquitously expressed. IFN-λ has been effective in the therapy of respiratory viral infections, playing a crucial role in potentiating adaptive immune responses that initiate at mucosal surfaces. Human IFN-λ has polymorphisms that may cause differences in the interaction with the specific receptor in the human population. Interestingly, bovine IFN-λ3 has an in silico-predicted higher affinity for the human receptor than its human counterparts, with high identity with different human IFN-λ variants, making it a suitable antiviral therapeutic candidate for human health. Here, we demonstrate that a recombinant bovine IFN-λ (rbIFN-λ) produced in HEK-293 cells is effective in preventing SARS-CoV-2 infection of VERO cells, with an inhibitory concentration 50% (IC50) between 30 and 50 times lower than that of human type I IFN tested here (α2b and ß1a). We also demonstrated the absence of toxicity of rbIFN-λ in human PBMCs and the lack of proinflammatory activity on these cells. Altogether, our results show that rbIFN-λ is as an effective antiviral potentially suitable for COVID-19 therapy. Among other potential applications, rbIFN-λ could be useful to preclude virus dispersion to the lungs and/or to reduce transmission from infected people. Moreover, and due to the non-specific activity of this IFN, it can be potentially effective against other respiratory viruses that may be circulating together with SARS-CoV-2.

3.
Vet Immunol Immunopathol ; 230: 110145, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33160262

RESUMO

Interferon lambda (IFN-λ) plays an important role in inducing an antiviral state in mucosal surfaces and has been used as an effective biotherapeutic against several viral diseases. Here we performed a proof of concept study on the activity of a biologically active recombinant bovine IFN-λ (rIFN-λ) produced in eukaryotic cells against Bovine Viral Diarrhea Virus (BVDV) in cattle. We first confirmed the lack of toxicity of different concentrations of rIFN-λ in bovine peripheral blood cells and the safety of its subcutaneous application in calves in doses up to 12 IU/kg. The antiviral activity of the rIFN-λ against BVDV was assessed in calves that were inoculated with 6 IU/kg of rIFN-λ (n = 4) or mock-treated (n = 2) two days before and after challenge with a BVDV type-2 non-cytopathic strain. Mock-treated animals developed respiratory disease, shedded the virus from 4 to 7 days post-infection (dpi) and had viremia between 4 and 14 dpi. Conversely, calves treated with rIFN-λ did not develop clinical symptoms. The virus was not found in nasal secretions or sera. Only one animal had a positive viral RNA detection in serum at 7 dpi. All infected animals treated with rIFN-λ increased systemic type-I IFNs levels at 4 dpi. The antiviral treatment induced an earlier onset of the anti-BVDV neutralizing antibodies. Altogether, these results constitute the proof-of-principle of bovine IFN-λ as an antiviral biotherapeutic to protect cattle against the clinical disease caused by BVDV.


Assuntos
Doença das Mucosas por Vírus da Diarreia Viral Bovina/imunologia , Doença das Mucosas por Vírus da Diarreia Viral Bovina/prevenção & controle , Doenças dos Bovinos/prevenção & controle , Vírus da Diarreia Viral Bovina/imunologia , Diarreia/veterinária , Imunização Passiva , Interferons/administração & dosagem , Fatores Etários , Animais , Bovinos , Doenças dos Bovinos/imunologia , Doenças dos Bovinos/virologia , Diarreia/prevenção & controle , Diarreia/virologia , Vírus da Diarreia Viral Bovina Tipo 1/imunologia , Vírus da Diarreia Viral Bovina Tipo 2/imunologia , Feminino , Imunização Passiva/veterinária , Interferons/classificação , Interferons/genética , Interferons/imunologia , Estudo de Prova de Conceito , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/imunologia , Eliminação de Partículas Virais
4.
Front Vet Sci ; 7: 45, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32118067

RESUMO

Bovine-viral-diarrhea virus (BVDV) can cause significant economic losses in livestock. The disease is controlled with vaccination and bovines are susceptible until vaccine immunity develops and may remain vulnerable if a persistently infected animal is left on the farm; therefore, an antiviral agent that reduces virus infectivity can be a useful tool in control programs. Although many compounds with promising in-vitro efficacy have been identified, the lack of laboratory-animal models limited their potential for further clinical development. Recently, we described the activity of type I and III interferons, IFN-α and IFN-λ respectively, against several BVDV strains in-vitro. In this study, we analyzed the in-vivo efficacy of both IFNs using a BALB/c-mouse model. Mice infected with two type-2 BVDV field strains developed a viremia with different kinetics, depending on the infecting strain's virulence, that persisted for 56 days post-infection (dpi). Mice infected with the low-virulence strain elicited high systemic TNF-α levels at 2 dpi. IFNs were first applied subcutaneously 1 day before or after infection. The two IFNs reduced viremia with different kinetics, depending on whether either one was applied before or after infection. In a second experiment, we increased the number of applications of both IFNs. All the treatments reduced viremia compared to untreated mice. The application of IFN-λ pre- and post-infection reduced viremia over time. This study is the first proof of the concept of the antiviral potency of IFN-λ against BVDV in-vivo, thus encouraging further trails for a potential use of this cytokine in cattle.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA