Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microb Pathog ; 190: 106613, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38484919

RESUMO

This research paper presents a novel approach to the green synthesis of silver nanoparticles (AgNPs) using viticultural waste, allowing to obtain NP dispersions with distinct properties and morphologies (monodisperse and polydisperse AgNPs, referred to as mAgNPs and pAgNPs) and to compare their biological activities. Our synthesis method utilized the ethanolic extract of Vitis vinifera pruning residues, resulting in the production of mAgNPs and pAgNPs with average sizes of 12 ± 5 nm and 19 ± 14 nm, respectively. Both these AgNPs preparations demonstrated an exceptional stability in terms of size distribution, which was maintained for one year. Antimicrobial testing revealed that both types of AgNPs inhibited either the growth of planktonic cells or the metabolic activity of biofilm sessile cells in Gram-negative bacteria and yeasts. No comparable activity was found towards Gram-positives. Overall, pAgNPs exhibited a higher antimicrobial efficacy compared to their monodisperse counterparts, suggesting that their size and shape may provide a broader spectrum of interactions with target cells. Both AgNP preparations showed no cytotoxicity towards a human keratinocyte cell line. Furthermore, in vivo tests using a silkworm animal model indicated the biocompatibility of the phytosynthesized AgNPs, as they had no adverse effects on insect larvae viability. These findings emphasize the potential of targeted AgNPs synthesized from viticultural waste as environmentally friendly antimicrobial agents with minimal impact on higher organisms.


Assuntos
Nanopartículas Metálicas , Testes de Sensibilidade Microbiana , Prata , Vitis , Prata/farmacologia , Prata/química , Prata/metabolismo , Nanopartículas Metálicas/química , Animais , Humanos , Vitis/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Tamanho da Partícula , Química Verde , Bactérias Gram-Negativas/efeitos dos fármacos , Bombyx , Biofilmes/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Queratinócitos/efeitos dos fármacos , Larva/efeitos dos fármacos , Leveduras/efeitos dos fármacos
2.
Nanomaterials (Basel) ; 13(17)2023 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-37686988

RESUMO

Among all strategies directed at developing new tools to support re-vascularization of damaged tissues, the use of pro-angiogenic soluble factors, derived from mesenchymal stem cells (MSCs), appears a promising approach for regenerative medicine. Here, we compared the feasibility of two devices, generated by coupling soluble factors of human dental pulp mesenchymal stem cells (DPSCs), with a nanostructured scaffold, to support angiogenesis once transplanted in mice. DPSCs were obtained from impacted wisdom tooth removal, usually considered surgical waste material. After 28 days, we verified the presence of active blood vessels inside the scaffold through optical and scansion electron microscopy. The mRNA expression of surface antigens related to macrophage polarization (CD68, CD80, CD86, CD163, CD206), as well as pro-angiogenic markers (CD31, CD34, CD105, Angpt1, Angpt2, CDH5) was evaluated by real-time PCR. Our results demonstrate the capability of DPSC-scaffold and DPSC soluble factors-scaffold to support angiogenesis, similarly to adipose stem cells, whereas the absence of blood vessels was found in the scaffold grafted alone. Our results provide evidence that DPSC-conditioned medium can be proposed as a cell-free preparation able to support angiogenesis, thus, providing a relevant tool to overcome the issues and restrictions associated with the use of cells.

3.
Cell Death Discov ; 9(1): 174, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37221171

RESUMO

Tissue regeneration or healing both require efficient vascularization within a tissue-damaged area. Based on this concept, a remarkable number of strategies, aimed at developing new tools to support re-vascularization of damaged tissue have emerged. Among the strategies proposed, the use of pro-angiogenic soluble factors, as a cell-free tool, appears as a promising approach, able to overcome the issues concerning the direct use of cells for regenerative medicine therapy. Here, we compared the effectiveness of adipose mesenchymal stem cells (ASCs), use as cell suspension, ASC protein extract or ASC-conditioned-medium (i.e., soluble factors), combined with collagenic scaffold, in supporting in vivo angiogenesis. We also tested the capability of hypoxia in increasing the efficiency of ASC to promote angiogenesis, via soluble factors, both in vivo and in vitro. In vivo studies were performed using the Integra® Flowable Wound Matrix, and the Ultimatrix in sponge assay. Flow cytometry was used to characterize the scaffold- and sponge-infiltrating cells. Real-time PCR was used to evaluate the expression of pro-angiogenic factors by stimulating Human Umbilical-Vein Endothelial Cells with ASC-conditioned media, obtained in hypoxic and normoxic conditions. We found that, in vivo, ACS-conditioned media can support angiogenesis similar to ASCs and ASC protein extract. Also, we observed that hypoxia increases the pro-angiogenic activities of ASC-conditioned media, compared to normoxia, by generating a secretome enriched in pro-angiogenic soluble factors, with bFGF, Adiponectine, ENA78, GRO, GRO-a, and ICAM1-3, as most regulated factors. Finally, ASC-conditioned media, produced in hypoxic condition, induce the expression of pro-angiogenic molecules in HUVECs. Our results provide evidence that ASC-conditioned-medium can be proposed as a cell-free preparation able to support angiogenesis, thus providing a relevant tool to overcome the issues and restrictions associated with the use of cells.

4.
Biomedicines ; 11(2)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36830886

RESUMO

Adipose tissue is recognized as a valuable source of cells with angiogenic, immunomodulatory, reparative and antifibrotic properties and emerged as a therapeutic alternative for the regeneration and repair of damaged tissues. The use of adipose-tissue-based therapy is expanding in autoimmune diseases, particularly in Systemic Sclerosis (SSc), a disease in which hands and face are severely affected, leading to disability and a decrease in quality of life. Combining the advantage of an abundant supply of fat tissue and a high abundance of stem/stromal cells, fat grafting and adipose tissue-derived cell-based therapies are attractive therapeutic options in SSc. This review aims to synthesize the evidence to determine the effects of the use of these biological products for face and hands treatment in the context of SSc. This highlights several points: the need to use relevant effectiveness criteria taking into account the clinical heterogeneity of SSc in order to facilitate assessment and comparison of innovative therapies; second, it reveals some impacts of the disease on fat-grafting success; third, an important heterogeneity was noticed regarding the manufacturing of the adipose-derived products and lastly, it shows a lack of robust evidence from controlled trials comparing adipose-derived products with standard care.

5.
Nanomaterials (Basel) ; 12(9)2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35564230

RESUMO

Several studies have been conducted on the interaction between three-dimensional scaffolds and mesenchymal stem cells for the regeneration of damaged tissues. Considering that stem cells do not survive for sufficient time to directly sustain tissue regeneration, it is essential to develop cell-free systems to be applied in regenerative medicine. In this work, by in vivo experiments, we established that a collagen-nanostructured scaffold, loaded with a culture medium conditioned with mesenchymal stem cells derived from adipose tissue (hASC-CM), exerts a synergic positive effect on angiogenesis, fundamental in tissue regeneration. To this aim, we engrafted athymic BALB-C nude mice with four different combinations: scaffold alone; scaffold with hASCs; scaffold with hASC crude protein extract; scaffold with hASC-CM. After their removal, we verified the presence of blood vessels by optical microscopy and confirmed the vascularization evaluating, by real-time PCR, several vascular growth factors: CD31, CD34, CD105, ANGPT1, ANGPT2, and CDH5. Our results showed that blood vessels were absent in the scaffold grafted alone, while all the other systems appeared vascularized, a finding supported by the over-expression of CD31 and CDH5 mRNA. In conclusion, our data sustain the capability of hASC-CM to be used as a therapeutic cell-free approach for damaged tissue regeneration.

6.
Regen Med ; 15(9): 2085-2098, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-33201769

RESUMO

Aim: The proposal of this study was to evaluate, in vitro, the potential paracrine effect of human adipose-derived stem cells (hASCs) to promote lymphangiogenesis in lymphatic endothelial cells isolated from rat diaphragmatic lymphatic vessels. Materials & methods: ELISA on VEGFA, VEGFC and IL6 in hASC-conditioned medium; LYVE1 immunostaining; and gene expression of PROX1, VEGFR3, VEGFC, VEGFA and IL6 were the methods used. Results: In 2D culture, hASC-conditioned medium was able to promote lymphatic endothelial cell survival, maintenance of endothelial cobblestone morphology and induction to form a vessel-like structure. Conclusion: The authors' results represent in vitro evidence of the paracrine effect of hASCs on lymphatic endothelial cells, suggesting the possible role of hASC-conditioned medium in developing new therapeutic approaches for lymphatic system-related dysfunction such as secondary lymphedema.


Assuntos
Células Endoteliais , Vasos Linfáticos , Adipócitos , Animais , Humanos , Linfangiogênese , Ratos , Células-Tronco , Fator C de Crescimento do Endotélio Vascular , Receptor 3 de Fatores de Crescimento do Endotélio Vascular
7.
Nanomaterials (Basel) ; 10(9)2020 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-32932658

RESUMO

This work is addressed to provide, by in vitro experiments, results on the repercussion that a nanostructured scaffold could have on viability, differentiation and secretion of bioactive factors of human adipose-derived stem cells (hASCs) when used in association to promote angiogenesis, a crucial condition to favour tissue regeneration. To achieve this aim, we evaluated cell viability and morphology by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay and microscopy analysis, respectively. We also investigated the expression of some of those genes involved in angiogenesis and differentiation processes utilizing quantitative polymerase chain reaction (qPCR), whereas the amounts of Vascular Endothelial Growth Factor A, Interleukin 6 and Fatty Acid-Binding Protein 4 secreted in the culture medium, were quantified by enzyme-linked immunosorbent assay (ELISA). Results suggested that, in the presence of the scaffold, cell proliferation and the exocytosis of factors involved in the angiogenesis process are reduced; by contrast, the expression of those genes involved in hASC differentiation appeared enhanced. To guarantee cell survival, the construct dimensions are, generally, smaller than clinically required. Furthermore, being the paracrine event the primary mechanism exerting the beneficial effects on injured tissues, the use of conditioned culture medium instead of cells may be convenient.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA