Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
World J Microbiol Biotechnol ; 40(2): 64, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38189984

RESUMO

We report here the structural and functional properties of an oxalate decarboxylase (OxDC)-like cupin domain-containing protein of Bacillus amyloliquefaciens MBNC and its role in imparting tolerance to acid stress conditions. Quantitative real-time PCR (qPCR) analysis revealed 32-fold and 20-fold upregulation of the target gene [(OxDC')cupin] under acetic acid stress and hydrochloric acid stress, respectively, indicating its association with the acid stress response. Bacterial cells with targeted inactivation of the (OxDC')cupin gene using the pMUTIN4 vector system showed decreased growth and survival rate in acidic pH, with drastically reduced exopolysaccharide production. In Silico protein-protein interaction studies revealed seven genes (viz. glmS, nagA, nagB, tuaF, tuaF, gcvT, and ykgA) related to cell wall biosynthesis and biofilm production to interact with OxDC-like cupin domain containing protein. While all these seven genes were upregulated in B. amyloliquefaciens MBNC after 6 h of exposure to pH 4.5, the mutant cells containing the inactivated (OxDC')cupin gene displayed significantly lower expression (RQ: 0.001-0.02) (compared to the wild-type cells) in both neutral and acidic pH. Our results indicate that the OxDC-like cupin domain containing protein is necessary for cell wall biosynthesis and biofilm production in Bacillus amyloliquefaciens MBNC for survival in acid-stress conditions.


Assuntos
Bacillus amyloliquefaciens , Carboxiliases , Bacillus amyloliquefaciens/genética , Carboxiliases/genética , Ácido Acético , Biofilmes
2.
Sci Rep ; 13(1): 16467, 2023 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-37777563

RESUMO

Aluminium (Al) toxicity in acid soil ecosystems is a major impediment to crop production as it drastically affects plant root growth, thereby acquisition of nutrients from the soil. Plant growth-promoting bacteria offers an interesting avenue for promoting plant growth under an Al-phytotoxic environment. Here, we report the plant growth-promoting activities of an acid-tolerant isolate of Bacillus subtilis that could ameliorate acid-induced Al-stress in rice (Oryza sativa L.). The whole genome sequence data identified the major genes and genetic pathways in B. subtilis MBB3B9, which contribute to the plant growth promotion in acidic pH. Genetic pathways for organic acid production, denitrification, urea metabolism, indole-3-acetic acid (IAA) production, and cytokinin biosynthesis were identified as major genetic machinery for plant growth promotion and mitigation of Al-stress in plants. The in-vitro analyses revealed the production of siderophores and organic acid production as primary mechanisms for mitigation of Al-toxicity. Other plant growth-promoting properties such as phosphate solubilization, zinc solubilization, and IAA production were also detected in significant levels. Pot experiments involving rice under acidic pH and elevated concentrations of aluminium chloride (AlCl3) suggested that soil treatment with bacterial isolate MBB3B9 could enhance plant growth and productivity compared to untreated plants. A significant increase in plant growth and productivity was recorded in terms of plant height, chlorophyll content, tiller number, panicle number, grain yield, root growth, and root biomass production.


Assuntos
Bacillus subtilis , Oryza , Bacillus subtilis/genética , Alumínio/metabolismo , Ecossistema , Raízes de Plantas , Genômica , Solo
3.
World J Microbiol Biotechnol ; 39(2): 59, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36572801

RESUMO

Long-term use of toxic pesticides in agricultural grounds has led to adverse effects on the environment and human health. Microbe-mediated biodegradation of pollutants is considered an effective strategy for the removal of contaminants in agricultural and environmental sustainability. Imidacloprid, a neonicotinoid class of pesticides, was widely applied insecticide in the control of pests in agricultural fields including the tea gardens of Assam. Here, native bacteria from imidacloprid contaminating tea garden soils were isolated and screened for imidacloprid degradation efficiency under laboratory conditions. Out of the 30 bacterial isolates, 4 were found to tolerate high concentrations of imidacloprid (25,000 ppm), one of which isolate MBSB-12 showed the highest efficiency for imidacloprid tolerance and utilization as the sole carbon source. Morphological, biochemical, and 16 S ribosomal RNA gene sequencing-based characterization revealed the isolate as Pseudomonas plecoglossicida MBSB-12. The isolate reduced 87% of extractable imidacloprid from the treated soil in 90 days compared to the control soil (without bacterial treatment). High-Resolution Mass Spectrometry (HRMS) analysis indicated imidacloprid breakdown to comparatively less harmful products viz., imidacloprid guanidine olefin [m/z = 209.0510 (M + H)+], imidacloprid urea [m/z = 212.0502 (M + H)+] and a dechlorinated degraded product of imidacloprid with m/z value 175.0900 (M + H)+. Further investigation on the molecular machinery of P. plecoglossicida MBSB-12 involved in the degradation of imidacloprid is expected to provide a better understanding of the degradation pathway.


Assuntos
Praguicidas , Poluentes do Solo , Humanos , Solo/química , Poluentes do Solo/metabolismo , Neonicotinoides/análise , Biodegradação Ambiental , Chá , Microbiologia do Solo
4.
Arch Microbiol ; 205(1): 44, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36576579

RESUMO

Common scab (CS) caused by pathogenic Streptomyces spp. plays a decisive role in the qualitative and quantitative production of potatoes worldwide. Although the CS pathogen is present in Assam's soil, disease signs and symptoms are less obvious in the landrace Rongpuria potatoes that indicate an interesting interaction between the plant and the geocaulosphere microbial population. Toward this, a comparative metagenomics study was performed to elucidate the geocaulosphere microbiome assemblages and functions of low CS-severe (LSG) and moderately severe (MSG) potato plants. Alpha diversity indices showed that CS occurrence modulated microbiome composition and decreased overall microbial abundances. Functional analysis involving cluster of orthologous groups (COG) too confirmed reduced microbial metabolism under disease incidence. The top-three most dominant genera were Pseudomonas (relative abundance: 2.79% in LSG; 12.31% in MSG), Streptomyces (2.55% in LSG; 5.28% in MSG), and Pantoea (2.30% in LSG; 3.51% in MSG). As shown by the high Pielou's J evenness index, the potato geocaulosphere core microbiome was adaptive and resilient to CS infection. The plant growth-promoting traits and potential antagonistic activity of major taxa (Pseudomonads, non-pathogenic Streptomyces spp., and others) against the CS pathogen, i.e., Streptomyces scabiei, point toward selective microbial recruitment and colonization strategy by the plants to its own advantage. KEGG Orthology analysis showed that the CS infection resulted in high abundances of ATP-binding cassette transporters and a two-component system, ubiquitous to the transportation and regulation of metabolites. As compared to the LSG metagenome, the MSG counterpart had a higher representation of important PGPTs related to 1-aminocyclopropane-1-carboxylate deaminase, IAA production, betaine utilization, and siderophore production.


Assuntos
Microbiota , Solanum tuberosum , Doenças das Plantas , Microbiologia do Solo , Índia
5.
Curr Microbiol ; 80(1): 10, 2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36445553

RESUMO

The last two decades have witnessed a large-scale conversion of crop cultivation areas into small and mid-sized tea plantations in Assam, India. Agricultural land-use pattern positively or negatively influences native hydrology and above- and belowground biodiversity. Very little is known about the effect of agricultural land-use patterns on the soil virus (especially, bacteriophage) community structure and function. This metagenomic-based study evaluated the rhizosphere viral community structure of three interlinked cultivation areas, viz., mixed cropping area (coded as CP1), tea-seed orchard (CP2), and monocropping tea cultivation (CP3). The bacteriophages belonged to four major classes with the dominance of Malgrandaviricetes (CP1: 79.37%; CP2: 64.62%; CP3: 4.85%) followed by Caudoviricetes (CP1: 20.49%; CP2: 35.22%; CP3: 90.29%), Faserviricetes (CP1: 0.03%; CP2: 0.08%; CP3: 3.88%), and Tectiliviricetes (CP1: 0.12%; CP2: 0.07%; CP3: 0.97%). Microviruses dominated the phage population in both CP1 and CP2, representing 79.35% and 64.59% of total bacteriophage abundance. Both CP1 and CP2 had higher bacteriophage richness (species richness, R in CP1: 65; R in CP2: 66) and lower evenness (Pielou's evenness index, J in CP1: 0.531; J in CP2: 0.579) compared to the CP3 (R: 30; J: 0.902). Principal component analysis of edaphic soil factors and bacteriophage community structure showed a reverse-proportional correlation between the levels of Al saturation, and exchangeable Al3+ ions with that of soil pH, and bacteriophage abundance. Our study indicates that monocropping tea cultivation soil bears less viral richness, abundance, and heterogeneity.


Assuntos
Bacteriófagos , Bacteriófagos/genética , Agricultura , Solo , Biodiversidade , Chá
7.
Sci Rep ; 12(1): 8875, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35614097

RESUMO

Proline plays a multifunctional role in several organisms including bacteria in conferring protection under stress conditions. In this paper we report the role of proline in conferring acid tolerance to Bacillus megaterium G18. An acid susceptible mutant of B. megaterium G18 which required proline for its growth under acid stress condition was generated through Tn5 mutagenesis. Further, targeted inactivation of proC involved in osmo-adaptive proline synthesis in B. megaterium G18 resulted in the loss of ability of the bacterium to grow at low pH (pH 4.5). Exogenous supply of proline (1 mM) to the growth medium restored the ability of the mutant cells to grow at pH 4.5 which was not the same in case of other osmoprotectants tested. Proline was produced and secreted to extracellular medium by B. megaterium G18 when growing in low pH condition as evidenced by the use of Escherichia coli proline auxotrophs and HPLC analysis. Further, pHT01 vector based expression of full length proC gene in the ∆proC mutant cells restored the survival capacity of the mutant cells in acidic pH, suggesting that proline production is an important strategy employed by B. megaterium G18 to survive under acid stress induced osmotic stress.


Assuntos
Bacillus megaterium , Ácidos , Bacillus megaterium/genética , Meios de Cultura , Escherichia coli/genética , Prolina
8.
Molecules ; 27(7)2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35408485

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) is an opportunistic pathogen and responsible for causing life-threatening infections. The emergence of hypervirulent and multidrug-resistant (MDR) S. aureus strains led to challenging issues in antibiotic therapy. Consequently, the morbidity and mortality rates caused by S. aureus infections have a substantial impact on health concerns. The current worldwide prevalence of MRSA infections highlights the need for long-lasting preventive measures and strategies. Unfortunately, effective measures are limited. In this study, we focus on the identification of vaccine candidates and drug target proteins against the 16 strains of MRSA using reverse vaccinology and subtractive genomics approaches. Using the reverse vaccinology approach, 4 putative antigenic proteins were identified; among these, PrsA and EssA proteins were found to be more promising vaccine candidates. We applied a molecular docking approach of selected 8 drug target proteins with the drug-like molecules, revealing that the ZINC4235426 as potential drug molecule with favorable interactions with the target active site residues of 5 drug target proteins viz., biotin protein ligase, HPr kinase/phosphorylase, thymidylate kinase, UDP-N-acetylmuramoyl-L-alanyl-D-glutamate-L-lysine ligase, and pantothenate synthetase. Thus, the identified proteins can be used for further rational drug or vaccine design to identify novel therapeutic agents for the treatment of multidrug-resistant staphylococcal infection.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Vacinas , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Genômica , Humanos , Ligases , Staphylococcus aureus Resistente à Meticilina/genética , Simulação de Acoplamento Molecular , Infecções Estafilocócicas/prevenção & controle , Staphylococcus aureus , Vacinologia
9.
Arch Microbiol ; 204(3): 173, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35165789

RESUMO

Wild mushrooms are rich sources of natural compounds with potent bioactive properties. Several important metabolites have been reported from mushrooms, which possess clinically important bioactive properties like antibacterial, anticancer, antidiabetic, and neuroprotective activity. In this study, we have evaluated the antimicrobial activity of Trametes coccinea fruiting body extracts against different bacterial isolates, viz., Bacillus subtilis, Bacillus cereus, and Escherichia coli. Fruiting bodies of three T. coccinea samples, of which two were collected from Santipur, Arunachal Pradesh and one collected from Jorhat, Assam, were used for extraction using methanol. The extracts showed significant antimicrobial activity against all the test bacteria. Minimum Inhibitory Concentration (MIC) of the extracts against Bacillus subtilis, Bacillus cereus, and Escherichia coli was recorded as 400 µg/ml, 400 µg/ml, and 300 µg/ml, respectively. Furthermore, the bioactive compounds of the extract were separated and detected using Thin Layer Chromatography (TLC). Presence of cinnabarinic acid (CBA)-a potent antimicrobial compound- was detected in TLC, which was further confirmed through High Performance Liquid Chromatography (HPLC) and Electrospray Ionization-Mass Spectrometry (ESI-MS). Cinnabarinic acid was able to inhibit the formation of biofilms in Bacillus subtilis and B. cereus, suggesting that the compound can be beneficial in the management of biofilm-based antimicrobial resistance.


Assuntos
Extratos Vegetais , Trametes , Antibacterianos/farmacologia , Bacillus cereus , Biofilmes , Carpóforos , Testes de Sensibilidade Microbiana , Oxazinas , Polyporaceae
10.
Arch Microbiol ; 204(2): 124, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-34997335

RESUMO

Soil pH conditions have important consequences for microbial community structure, their dynamics, ecosystem processes, and interactions with plants. Low soil pH affects the growth and functional activity of bacterial biocontrol agents which may experience a paradigm shift in their ability to act antagonistically against fungal phytopathogens. In this study, the antifungal activity of an acid-tolerant soil bacterium Bacillus amyloliquefaciens MBNC was evaluated under low pH and compared to its activity in neutral pH conditions. Bacterial supernatant from 3-day-old culture (approximately 11.2 × 108 cells/mL) grown in low pH conditions was found more effective against fungal pathogens. B. amyloliquefaciens MBNC harboured genes involved in the synthesis of secondary metabolites of which surfactin homologues, with varying chain length (C11-C15), were identified through High-Resolution Mass Spectroscopy. The pH of the medium influenced the production of these metabolites. Surfactin C15 was exclusive to the extract of pH 4.5; production of iturinA and surfactin C11 was detected only in pH 7.0, while surfactin C12, C13 and C14 were detected in extracts of both the pH conditions. The secretion of phytohormones viz. indole acetic acid and gibberellic acid by B. amyloliquefaciens MBNC was detected in higher amounts in neutral condition compared to acidic condition. Although, secretion of metabolites and phytohormones in B. amyloliquefaciens MBNC was influenced by the pH condition of the medium, the isolate retained its antagonistic efficiency against several fungal phyto-pathogens under acidic condition.


Assuntos
Bacillus amyloliquefaciens , Antifúngicos/farmacologia , Ecossistema , Fungos , Concentração de Íons de Hidrogênio , Lipopeptídeos , Doenças das Plantas
11.
Mycology ; 12(4): 279-295, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34900382

RESUMO

In nature, species interacts/competes with one other within their surrounding for food and space and the type of interactions are unique to each species. The interacting partners secrete different metabolites, which may have high importance in human welfare. Fungal-fungal interactions are complex mechanisms that need better understanding. Here, 14 fungal isolates were facilitated in 105 possible combinations to interact on potato dextrose agar. Morphologically, no changes were observed when the same fungal isolates were allowed to interact within them. However, 10 interactions between different fungal isolates showed mutual replacement with each fungus; capturing territory from the other. Contrastingly, 35 interactions resulted into complete replacement as one of the fungi was inhibited by rapid growth of the other fungus. In 46 interactions, formation of barrage was observed leading to deadlock type of interaction wherein both fungi have restricted growth. To study in details about the barrage formation, two fungal interactions were taken (i) T. coccinea vs. L. lactinea and (ii) T. coccinea vs. T. versicolor. Microscopic changes in the hyphal growth during interaction were observed. There was significant increase in the enzymatic activities including cellulase, xylanase and chitinase during in-vitro fungal-fungal interaction, suggesting the importance of such interactions for commercial enzyme production.

12.
IMA Fungus ; 12(1): 33, 2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34749811

RESUMO

Fungal-fungal interaction often leads to the change in metabolite profile of both the interacting fungus which may have potential implication in industry or agriculture. In the present study, we performed two sets of fungal-fungal interaction-Trametes coccinea (F3) with Leiotrametes lactinea (F9) and T. coccinea (F3) with T. versicolor (F1) to understand the changes in the metabolite profile during the interaction process and how this process impacts the hyphal/mycelial morphology of the participating fungi. The metabolites produced during interaction of T. coccinea (F3) with L. lactinea (F9) and T. coccinea (F3) with T. versicolor (F1) was analysed through liquid chromatography coupled to mass spectroscopy (LC-MS). Most of the metabolites secreted or produced during interaction are associated with defensive response. Further, visualization with scanning electron microscopy revealed that interaction between the tested fungi led to the changes in the hyphal morphology. The bipartite fungal interaction resulted in the production of a dark brown colour pigment-melanin as confirmed by the LC-MS, FTIR and NMR analysis. Moreover, the fungal-fungal interaction also led to increase in the production of laccase, a group of multicopper oxidases involved in detoxification of toxic compounds. Further, increased activity of superoxide dismutase, an enzyme that catalyzes the dismutation of the superoxide anion to hydrogen peroxide was also recorded during fungal-fungal interaction. Quantitative real-time PCR revealed upregulation of lcc1 (encoding a laccase enzyme) and few other stress related genes of T. versicolor during its hyphal interaction with T. coccinea, suggesting a direct correlation between laccase production and melanin production.

13.
Arch Microbiol ; 203(9): 5661-5674, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34462787

RESUMO

We employed an Illumina-based high-throughput metagenomics sequencing approach to unveil the rhizosphere and root endosphere microbial community associated with an organically grown Camellia population located at the Experimental Garden for Plantation Crops, Assam (India). The de novo assembled tea root endosphere metagenome contained 24,231 contigs (total 7,771,089 base pairs with an average length of 321 bps), while tea rhizosphere soil metagenome contained 261,965 sequences (total 230,537,174 base pairs, average length 846). The most prominent rhizobacteria belonged to the genera, viz., Bacillus (10.35%), Candidatus Solibacter (6.36%), Burkholderia (5.19%), Pseudomonas (3.9%), Streptomyces (3.52%), and Bradyrhizobium (2.77%), while the root endosphere was dominated by bacterial genera, viz., Serratia (46.64%), Methylobacterium (8.02%), Yersinia (5.97%), Burkholderia (2.05%), etc. The presence of few agronomically important bacterial genera, Bradyrhizobium, Rhizobium (each 0.93%), Sinorhizobium (0.34%), Azorhizobium, and Flavobacterium (0.17% each), was also detected in the root endosphere. KEGG pathway mapping indicated the presence of microbial metabolic pathway genes related to tyrosine metabolism, tryptophan metabolism, glyoxylate, and dicarboxylate metabolism which play important roles in endosphere activities, including survival, growth promotion, and host adaptation. The root endosphere microbiome also contained few important plant growth promoting traits related to phytohormone production, abiotic stress alleviation, mineral solubilization, and plant disease suppression.


Assuntos
Camellia sinensis , Microbiologia do Solo , Raízes de Plantas , Rizosfera , Chá
14.
Curr Microbiol ; 78(8): 3104-3114, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34173842

RESUMO

Acid tolerance response (ATR), a process by which bacteria optimize their growth conditions for cellular functions, is a well-characterized bacterial stress response. A bacterial isolate identified, as Bacillus amyloliquefaciens MBNC, was isolated from acidic soil and studied for its acid tolerance response under several range of acidic stress conditions imposed through inorganic acid, organic acid, acetate buffer, and soil extract. The ability of the B. amyloliquefaciens MBNC to tolerate extreme acidic conditions (pH 4.5) increased when exposed to moderate-acidic pH (pH 5.5). Along with ATR, the bacterial cell density was also critical to its ability to tolerate low pH as the cells of late log phase were more tolerant to low pH stress compared to the early log phase cells. A comparative expression study of 28 genes of B. amyloliquefaciens MBNC was assessed in cells grown in neutral (pH 7.0) and acidic condition (pH 4.5) through qRT-PCR. Among the 28 genes analyzed, 24 genes showed increased expression whereas the expression of 4 genes was downregulated under acid stress indicating to the involvement of the genes in acid stress response.


Assuntos
Bacillus amyloliquefaciens , Ácidos/toxicidade , Adaptação Fisiológica , Bacillus amyloliquefaciens/genética , Expressão Gênica , Concentração de Íons de Hidrogênio
15.
Arch Microbiol ; 203(5): 2007-2028, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33554275

RESUMO

This paper presents a comparative study of endophytic bacteria from cultivated (Oryza sativa) and wild rice (Oryza rufipogon) plants and their functional traits related to plant growth promotion. A total of 70 bacterial isolates were characterized by both biochemical and molecular identification methods. Taxonomic classification showed dominance of three major phyla, viz, Firmicutes (57.1%), Actinobacteria (20.0%) and Proteobacteria (22.8%). Screening for in vitro plant growth-promoting activities revealed a hitherto unreported endophytic bacterium from wild rice germplasm, Microbacterium laevaniformans RS0111 with highest indole acetic acid (28.39 ± 1.39 µg/ml) and gibberellic acid (67.23 ± 1.83 µg/ml) producing efficiency. Few other endophytic isolates from cultivated rice germplasm such as Bacillus tequilensis RHS01 showed highest phosphate solubilizing activity (81.70 ± 1.98 µg/ml), while Microbacterium testaceum MKLS01 and Microbacterium enclense MI03 L05 showed highest potassium (53.42 ± 0.75 µg/ml) and zinc solubilizing activity (157.50%). Fictibacillus aquaticus LP20 05 produced highest siderophore (64.8%). In vivo evaluation of plant growth-promoting efficiencies of the isolates showed that Microbacterium laevaniformans RS0111, Microbacterium testaceum MKLS01 and Bacillus tequilensis RHS 01 could increase rice grain yield by 3.4-fold when compared to the control group. This study indicates the potentiality of rice endophytes isolates as an effective bioinoculants.


Assuntos
Endófitos/fisiologia , Microbiologia de Alimentos , Oryza/crescimento & desenvolvimento , Oryza/microbiologia , Agricultura , Bacillaceae/metabolismo , Bacillus/metabolismo , Bactérias/metabolismo , Biodiversidade , Giberelinas/metabolismo , Índia , Ácidos Indolacéticos/metabolismo , Microbacterium/isolamento & purificação , Microbacterium/metabolismo , Desenvolvimento Vegetal , Sideróforos/metabolismo
16.
Curr Genomics ; 21(7): 512-524, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33214767

RESUMO

BACKGROUND: Microorganisms are an important component of an aquatic ecosystem and play a critical role in the biogeochemical cycle which influences the circulation of the materials and maintains the balance in aquatic ecosystems. OBJECTIVE: The seasonal variation along with the impact of anthropogenic activities, water quality, bacterial community composition and dynamics in the Loktak Lake, the largest freshwater lake of North East India, located in the Indo-Burma hotspot region was assessed during post-monsoon and winter season through metagenome analysis. METHODS: Five soil samples were collected during Post-monsoon and winter season from the Loktak Lake that had undergone different anthropogenic impacts. The metagenomic DNA of the soil samples was extracted using commercial metagenomic DNA extraction kits following the manufacturer's instruction. The extracted DNA was used to prepare the NGS library and sequenced in the Illumina MiSeq platform. RESULTS: Metagenomics analysis reveals Proteobacteria as the predominant community followed by Acidobacteria and Actinobacteria. The presence of these groups of bacteria indicates nitrogen fixation, oxidation of iron, sulfur, methane, and source of novel antibiotic candidates. The bacterial members belonging to different groups were involved in various biogeochemical processes, including fixation of carbon and nitrogen, producing streptomycin, gramicidin and perform oxidation of sulfur, sulfide, ammonia, and methane. CONCLUSION: The outcome of this study provides a valuable dataset representing a seasonal profile across various land use and analysis, targeting at establishing an understanding of how the microbial communities vary across the land use and the role of keystone taxa. The findings may contribute to searches for microbial bio-indicators as biodiversity markers for improving the aquatic ecosystem of the Loktak Lake.

17.
PLoS One ; 15(4): e0224051, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32320394

RESUMO

Association of bacteria with fungi is a major area of research in infection biology, however, very few strains of bacteria have been reported that can invade and reside within fungal hyphae. Here, we report the characterization of an endofungal bacterium Serratia marcescens D1 from Mucor irregularis SS7 hyphae. Upon re-inoculation, colonization of the endobacterium S. marcescens D1 in the hyphae of Mucor irregularis SS7 was demonstrated using stereo microscopy. However, S. marcescens D1 failed to invade into the hyphae of the tested Ascomycetes (except Fusarium oxysporum) and Basidiomycetes. Remarkably, Serratia marcescens D1 could invade and spread over the culture of F. oxysporum that resulted in mycelial death. Prodigiosin, the red pigment produced by the Serratia marcescens D1, helps the bacterium to invade fungal hyphae as revealed by the increasing permeability in fungal cell membrane. On the other hand, genes encoding the type VI secretion system (T6SS) assembly protein TssJ and an outer membrane associated murein lipoprotein also showed significant up-regulation during the interaction process, suggesting the involvement of T6SS in the invasion process.


Assuntos
Mucor/fisiologia , Serratia marcescens/fisiologia , Simbiose , Membrana Celular/metabolismo , Hifas/fisiologia , Serratia marcescens/genética , Sistemas de Secreção Tipo VI/genética , Sistemas de Secreção Tipo VI/metabolismo
18.
3 Biotech ; 10(2): 64, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32030333

RESUMO

This study reports the microbial quality of ethnic starter culture Xaj-pitha used for rice wine fermentation in Assam. Here, we collected 60 Xaj-pitha samples belonging to Ahom community of the state and enumerated the microorganisms using spread plate technique. Illumina-based whole genome shotgun sequencing detected the presence of microbial contaminants like Acidovorax, Herbaspirillum, Methylobacterium, Pantoea, Pseudomonas, Stenotrophomonas, Staphylococcus, Micrococcus, Acinetobacter, etc. Presence of major health hazards associated with spontaneous rice wine fermentation necessitated method optimization through the development of a defined mixed starter culture. For this, functionally important α-amylase producers viz., Penicillium sp. ABTSJ23, Rhizopus oryzae ABTSJ63, Mucor guilliermondii ABTSJ72 and Amylomyces rouxii ABTSJ82 and eight yeasts viz., Saccharomyces cerevisiae ABTY1J, ABTY1S, ADJ5 & ADJ1, Wickerhamomyces anomalus ADJ2, Saccharomycopsis malanga ADJ3, Saccharomycopsis fibuligera ADJ4 and Saccharomycopsis malanga ADJ6 were retrieved using appropriate media. All the mould cultures tested negative for aflotoxins production. Among the yeasts, Saccharomyces cerevisiae ABTY1S and ADJ1 decarboxylated lysine HCl and tyramine HCl, respectively, indicating their biogenic amine production ability. For defined mixed starter culture, Amylomyces rouxii ABT82 with α-amylase (5.92 U/ml) and glucoamylase (7.50 U/ml) activities was selected as fungal partner; while Saccharomycopsis fibuligera ADJ4 and Saccharomyces cerevisiae ABT-Y1J with high ethanol production (up to 10.11% and 9.88% v/v, respectively) were selected as yeast partners. The mixed culture was able to produce high amount of glucose, ethanol and liquid (glucose 10.91% w/v; ethanol 7.5% w/v; liquid 51.0% w/v). Therefore, this study demonstrated the efficiency of mixed starter cultures for safe and controlled rice wine production.

19.
3 Biotech ; 9(11): 418, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31696023

RESUMO

The microbiology of many cassava products and the wastes generated during the processing have been reported; however, majority of these reports used culture-dependent methods. This has resulted in a dearth of information on the bacterial diversity of cassava peels and peel heaps. Large amounts of cassava peels generated during the processing of cassava root are usually discharged on land or water as wastes and are allowed to rot in the open, especially in some developing countries. Culture-independent methods such as PCR-based amplification and sequencing of 16S rRNA genes, among others have been used in recent times to study the diversity of microbes in different environmental samples. In this study, bacterial isolates were screened for cellulase and xylanase enzyme activities on minimal agar and genomic DNA was isolated from cassava peel samples; metagenomics was carried out using MiSeq 2 × 300 with primers specific for V3-V4 bacterial region. Samples collected from Nigeria (AAG) had more species compared with samples from India (JHA) with 793 and 525 observed OTUs (operational taxonomic units), respectively. Five bacterial isolates from cassava peel-heap samples obtained from Ogbomoso, Nigeria showed no ability to produce cellulase enzyme, seven isolates from the Nigeria samples and three from Jorhat samples were positive for xylanase production; the highest amylase activity was shown by isolate AG18 (10,055 U/mL), while the lowest was recorded for isolate JA2 (2333 U/mL) with a significant difference observed in the amylase activities of isolates (p ≤ 0.05). Comparing the most abundant taxonomy for each of the samples at different taxonomic levels, the most abundant for sample AAG were phylum Firmicutes (42.11%), class Bacilli (41.27%), order Lactobacillales (33.11%), family Acetobacteraceae (31.30%), genus Acetobacter (30.02%) and unclassified species of Acetobacter (29.88%), while sample JHA had Actinobacteria (47.47%) as the highest phylum and class, order Actinomycetales (47.47%), family Brevibacteriaceae (46.97%), genus Brevibacterium (46.97%) and unclassified species of Brevibacterium (46.89%). This study provides an insight into the vast diversity of the bacteria associated with cassava peel heaps and the ability of some of the bacteria to produce selected extracellular enzymes.

20.
BMC Microbiol ; 19(1): 71, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30940070

RESUMO

BACKGROUND: The use of chemical fungicides against fungal pathogens adversely affects soil and plant health thereby resulting in overall environmental hazards. Therefore, biological source for obtaining antifungal agents is considered as an environment-friendly alternative for controlling fungal pathogens. RESULTS: In this study, seven endophytic bacteria were isolated from sugarcane leaves and screened for its antifungal activity against 10 fungal isolates belonging to the genera Alternaria, Cochliobolus, Curvularia, Fusarium, Neodeightonia, Phomopsis and Saccharicola isolated from diseased leaves of sugarcane. Among the seven bacterial isolates, SCB-1 showed potent antagonistic activity against the tested fungi. Based on the phenotypic data, Fatty Acid Methyl Esters (FAME) and 16S rRNA gene sequence analysis, the isolate SCB-1 was identified as Bacillus subtilis. The bacterial isolate was screened negative for chitinase production; however, chloroform and methanol extracts of the bacterial culture caused significant inhibition in the growth of the fungal isolates on semisolid media. Volatile component assay showed highest inhibitory activity against Saccharicola bicolor (SC1.4). A PCR based study detected the presence of the genes involved in biosynthesis of surfactin, bacillaene, difficidin, macrolactins and fengycin. Mass spectrometric analysis of the bacterial extract detected the presence of antifungal lipopeptide surfactin, but other metabolites were not detected. The biocontrol activity of the bacterial isolate was established when bacterial pretreated mung bean seeds were able to resist Fusarium infection, however, the untreated seeds failed to germinate. CONCLUSION: The antifungal potential of isolate Bacillus subtilis SCB-1 was established against taxonomically diverse fungal pathogens including the genera Saccharicola, Cochliobolus, Alternaria and Fusarium. The potent antifungal compound surfactin as well as volatiles produced by the bacterial isolate could be responsible for its bio-control activity against fungal infections.


Assuntos
Antibiose , Bacillus subtilis/química , Bacillus subtilis/fisiologia , Agentes de Controle Biológico , Fusarium/patogenicidade , Lipopeptídeos/química , Endófitos/química , Endófitos/fisiologia , Fungos/genética , Fungos/patogenicidade , Peptídeos Cíclicos/química , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Plantas/microbiologia , RNA Ribossômico 16S
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA