Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38597995

RESUMO

The cell-surface receptor tyrosine kinase c-mesenchymal-epithelial transition factor (c-Met) is overexpressed in a wide range of solid tumors, making it an appropriate target antigen for the development of anticancer therapeutics. Various antitumor c-Met-targeting therapies (including monoclonal antibodies [mAbs] and tyrosine kinases) have been developed for the treatment of c-Met-overexpressing tumors, most of which have so far failed to enter the clinic because of their efficacy and complications. Antibody-drug conjugates (ADCs), a new emerging class of cancer therapeutic agents that harness the target specificity of mAbs to deliver highly potent small molecules to the tumor with the minimal damage to normal cells, could be an attractive therapeutic approach to circumvent these limitations in patients with c-Met-overexpressing tumors. Of great note, there are currently nine c-Met-targeting ADCs being examined in different phases of clinical studies as well as eight preclinical studies for treating various solid tumors. The purpose of this study is to present a broad overview of clinical- and preclinical-stage c-Met-targeting ADCs.

2.
Int J Biol Macromol ; 261(Pt 1): 129737, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38286373

RESUMO

BACKGROUND: The combination of cells and biomaterials has become a powerful approach to regenerative medicine in recent years. Understanding the in-vitro interactions between cells and biomaterials is crucial for the success of regenerative medicine. AIM: In this study, we developed an AD-pectin/chitosan/nano-crystalline cellulose scaffold with nano-hydroxy-apatite (n-HAP) and alendronate (ALN). The second step was to evaluate its effect on the immunomodulatory properties and biological behaviors of seeded adipose-derived mesenchymal stem cells (ADSCs) for bone tissue repair. MATERIAL AND METHOD: After preparing and evaluating the characterization tests of the new combined n-HAP scaffold, we established different culture conditions to evaluate ADSC growth on this scaffold with or without ALN. The main assays were MTT assay, RT-PCR, and ELISA. RESULTS: Our data regarding characterization tests (including SEM, TGA, FTIR, gelation time, swelling ratio, rheology and degradation tests) of ALN-loaded n-HAP scaffold showed the proper stability and good mechanical status of the scaffold. ADSC proliferation and viability increased in the presence of the scaffold compared with other conditions. Moreover, our data demonstrated increased gene expression and protein levels of anti-inflammatory TGF-ß, HGF, and IDO cytokines in the presence of the ALN-loaded n-HAP scaffold, indicating the increased immunosuppressive activity of ADSCs in vitro. CONCLUSION: This study demonstrates the promising abilities of the ALN-loaded n-HAP scaffold to increase the proliferation, viability, and immunomodulatory capacity of ADSCs, elucidating new aspects of cell-material interactions that can be used for bone tissue regeneration/repair, and paving the path of future research in developing new approaches for MSC- based therapy.


Assuntos
Quitosana , Quitosana/química , Alendronato/farmacologia , Alendronato/química , Apatitas , Hidrogéis/farmacologia , Hidrogéis/química , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química , Alicerces Teciduais/química , Engenharia Tecidual
3.
BMC Res Notes ; 16(1): 273, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37845751

RESUMO

OBJECTIVE: Multiple sclerosis (MS) is a progressing neurodegenerative disease marked by chronic central nervous system inflammation and degeneration.This study investigates gene expression profiles of T-box transcription factor TBX21 (T-bet), interferon-gamma (IFN-γ), and long non-coding RNA MEG3 in peripheral blood mononuclear cells (PBMCs) from treatment-naïve Relapsing-Remitting Multiple Sclerosis patients (RRMS), healthy controls, and RRMS patients on different Disease Modifying Therapies (DMTs). The aim is to understand the role of T-bet, IFN-γ, and MEG3 in MS pathogenesis and their potential as diagnostic and therapeutic targets. RESULTS: Elevated T-bet expression is observed in treatment-naïve RRMS patients compared to healthy individuals. RRMS patients treated with Interferon beta-1alpha (IFNß-1a) and fingolimod exhibit downregulated T-bet and MEG3 expression levels, respectively, with more pronounced effects in females. Healthy individuals show a moderate positive correlation between T-bet and MEG3 and between IFN-γ and T-bet. In RRMS patients treated with Glatiramer Acetate (GA), a strong positive correlation is observed between MEG3 and IFN-γ. Remarkably, RRMS patients treated with Dimethyl Fumarate (DMF) exhibit a significant positive correlation between T-bet and MEG3. These findings underscore the diagnostic potential of T-bet in RRMS, warranting further exploration of MEG3, T-bet, and IFN-γ interplay in RRMS patients.


Assuntos
Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Doenças Neurodegenerativas , Feminino , Humanos , Acetato de Glatiramer/uso terapêutico , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Esclerose Múltipla Recidivante-Remitente/genética , Cloridrato de Fingolimode/uso terapêutico , Fumarato de Dimetilo , Leucócitos Mononucleares , Interferon gama/genética , Esclerose Múltipla/tratamento farmacológico
5.
Naunyn Schmiedebergs Arch Pharmacol ; 396(10): 2741-2751, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37093251

RESUMO

Glioblastoma is one of the most common and invasive types of primary brain malignancies in adults, accounting for 45.5% of malignancies. Its annual prevalence is low compared to other cancers. The survival rate of this disease is about 14 months after diagnosis. Temozolomide (TMZ) is a common chemotherapy drug used to treatment of glioblastoma, but drug resistance against this drug is an important barrier to successful treatment of this cancer. Today, siRNAs play a significant role in cancer treatment. SIX4 is a transcriptional regulatory molecule that can act as a transcriptional suppressor and an activator in target genes involved in differentiation, migration, and cell survival processes. The aim of this study was to evaluate the effect of SIX4-siRNA on A-172 glioblastoma cells, its role as a tumor suppressor, and its combination with TMZ. We studied the cytotoxic effect of the SIX4-siRNA and TMZ on A-172 cells using the MTT assay investigated their effect on apoptosis and cell cycle of A-172 cells used wound healing assays to assess their effect on cell migration. Finally, we used qRT-PCR to study the mRNA expression levels of genes involved in apoptosis and migration of tumoral cells after treatments. Based on our results, silencing SIX4-siRNA expression reduced the cell viability of A-172 cells and sensitize these cells to TMZ. Furthermore, we observed an increase in apoptosis and cell cycle arrest, and a decrease in migration. Bax and caspase-9 overexpression and BCL2 and MMP9 downregulation were detected in the combination of SIX4-siRNA and TMZ. According to our results, the combination of SIX4-siRNA and TMZ can be a very useful strategy for successful glioblastoma treatment.


Assuntos
Glioblastoma , Humanos , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , RNA Interferente Pequeno/genética , Dacarbazina/farmacologia , Dacarbazina/uso terapêutico , Proliferação de Células , Linhagem Celular Tumoral , Apoptose , Antineoplásicos Alquilantes/farmacologia , Resistencia a Medicamentos Antineoplásicos , Transativadores/farmacologia , Transativadores/uso terapêutico , Proteínas de Homeodomínio
6.
Int Immunopharmacol ; 119: 110160, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37080068

RESUMO

BACKGROUND: Numerous studies have demonstrated the role of T helper (Th) 17 and T regulatory (reg) cells and pro-inflammatory and anti-inflammatory cytokines related to these cells in the pathogenesis of MS and its animal model, experimental autoimmune encephalomyelitis (EAE). STAT3 is one of the downstream signaling proteins of IL-23, IL-6, and IL-21 that are required for Th17 cells differentiation. STA-21 is a STAT3 inhibitor that functions by inhibiting STAT3 dimerization and binding to DNA impairing the expression of STAT3 target genes including, RORγt, IL-21 and IL-23R that are also required for Th17 cell differentiation. AIM: In this study, we evaluated the effect of STA-21 on EAE Model and investigated how this small molecule can change Th17/Treg balance leading to amelioration of disease. METHODS: After EAE induction and treatment with STA-21, its effects were assessed. Major assays were H&E and LFB staining, Flow cytometric analysis, Reverse transcription-PCR (RT-PCR), and ELISA. RESULTS: STA-21 ameliorated the EAE severity and decreased the EAE inflammation and demyelination. It also decreased STAT3 phosphorylation, the proportion of Th17 cells and the protein level of IL-17. In contrast, the balance of Tregs and the level of anti-inflammatory cytokine, IL-10 increased in STA-21-treated mice. Moreover, STA-21 significantly decreased the expression of Th17 related transcription factors, RORɣt and IL-23R while FOXP3 expression associated with Treg differentiation was increased. CONCLUSION: This study showed that STA-21 has therapeutic effects in EAE by reducing inflammation and shifting inflammatory immune responses to anti-inflammatory and can be used as a suitable treatment strategy for the treatment of EAE. The effectiveness of inhibiting or strengthening the functional cells of the immune system by these small molecules in terms of easy to access, simple construction and inexpensive expansion make them as a suitable tool for the treatment of inflammatory and autoimmune diseases.


Assuntos
Encefalomielite Autoimune Experimental , Animais , Camundongos , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Linfócitos T Reguladores , Citocinas/metabolismo , Inflamação/tratamento farmacológico , Anti-Inflamatórios/uso terapêutico , Células Th17 , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA